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Using nbconvert enables:

• presentation of information in familiar formats, such as PDF.

• publishing of research using LaTeX and opens the door for embedding notebooks in papers.

• collaboration with others who may not use the notebook in their work.

• sharing contents with many people via the web using HTML.

Overall, notebook conversion and the nbconvert tool give scientists and researchers the flexibility to deliver infor-
mation in a timely way across different formats.

Primarily, the nbconvert tool allows you to convert a Jupyter .ipynb notebook document file into another static
format including HTML, LaTeX, PDF, Markdown, reStructuredText, and more. nbconvert can also add productiv-
ity to your workflow when used to execute notebooks programmatically.

If used as a Python library (import nbconvert), nbconvert adds notebook conversion within a project. For
example, nbconvert is used to implement the “Download as” feature within the Jupyter Notebook web application.
When used as a command line tool (invoked as jupyter nbconvert ...), users can conveniently convert just
one or a batch of notebook files to another format.

Contents:

USER DOCUMENTATION 1
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CHAPTER

ONE

INSTALLATION

See also:

Installing Jupyter Nbconvert is part of the Jupyter ecosystem.

1.1 Installing nbconvert

Nbconvert is packaged for both pip and conda, so you can install it with:

pip install nbconvert
# OR
conda install nbconvert

If you’re new to Python, we recommend installing Anaconda, a Python distribution which includes nbconvert and the
other Jupyter components.

Important: To unlock nbconvert’s full capabilities requires Pandoc and TeX (specifically, XeLaTeX). These must be
installed separately.

1.2 Installing Pandoc

For converting markdown to formats other than HTML, nbconvert uses Pandoc (1.12.1 or later).

To install pandoc on Linux, you can generally use your package manager:

sudo apt-get install pandoc

On other platforms, you can get pandoc from their website.

1.3 Installing TeX

For converting to PDF, nbconvert uses the TeX document preparation ecosystem. It produces an intermediate .tex
file which is compiled by the XeTeX engine with the LaTeX2e format (via the xelatex command) to produce PDF
output.

New in version 5.0: We use XeTeX as the rendering engine rather than pdfTeX (as in earlier versions). XeTeX can
access fonts through native operating system libraries, it has better support for OpenType formatted fonts and Unicode
characters.

3
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To install a complete TeX environment (including XeLaTeX and the necessary supporting packages) by hand can be
tricky. Fortunately, there are packages that make this much easier. These packages are specific to different operating
systems:

• Linux: TeX Live

– E.g. on Debian or Ubuntu: sudo apt-get install texlive-xetex

• macOS (OS X): MacTeX.

• Windows: MikTex

Because nbconvert depends on packages and fonts included in standard TeX distributions, if you do not have a com-
plete installation, you may not be able to use nbconvert’s standard tooling to convert notebooks to PDF.

1.3.1 PDF conversion on a limited TeX environment

If you are only able to install a limited TeX environment, there are two main routes you could take to convert to PDF:

1. Using TeX by hand

a. You could convert to .tex directly; this requires Pandoc.

b. edit the file to accord with your local environment

c. run xelatex directly.

2. Custom exporter

a. You could write a custom exporter that takes your system’s limitations into account.

4 Chapter 1. Installation
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CHAPTER

TWO

USING AS A COMMAND LINE TOOL

The command-line syntax to run the nbconvert script is:

$ jupyter nbconvert --to FORMAT notebook.ipynb

This will convert the Jupyter notebook file notebook.ipynb into the output format given by the FORMAT string.

2.1 Default output format - HTML

The default output format is HTML, for which the --to argument may be omitted:

$ jupyter nbconvert notebook.ipynb

2.2 Supported output formats

The currently supported output formats are:

• HTML,

• LaTeX,

• PDF,

• Reveal.js HTML slideshow,

• Markdown,

• Ascii,

• reStructuredText,

• executable script,

• notebook.

Jupyter also provides a few templates for output formats. These can be specified via an additional --template
argument and are listed in the sections below.

2.2.1 HTML

• --to html

5
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– --template full (default)

A full static HTML render of the notebook. This looks very similar to the interactive view.

– --template basic

Simplified HTML, useful for embedding in webpages, blogs, etc. This excludes HTML headers.

2.2.2 LaTeX

• --to latex

Latex export. This generates NOTEBOOK_NAME.tex file, ready for export. Images are output as .png files in
a folder.

– --template article (default)

Latex article, derived from Sphinx’s howto template.

– --template report

Latex report, providing a table of contents and chapters.

Note: nbconvert uses pandoc to convert between various markup languages, so pandoc is a dependency when
converting to latex or reStructuredText.

2.2.3 PDF

• --to pdf

Generates a PDF via latex. Supports the same templates as --to latex.

2.2.4 Reveal.js HTML slideshow

• --to slides

This generates a Reveal.js HTML slideshow.

Running this slideshow requires a copy of reveal.js (version 3.x).

By default, this will include a script tag in the html that will directly load reveal.js from a public CDN.

This means that if you include your slides on a webpage, they should work as expected. However, some features
(specifically, speaker notes & timers) will not work on website because they require access to a local copy of reveal.js.

Speaker notes require a local copy of reveal.js. Then, you need to tell nbconvert how to find that local copy.

Timers only work if you already have speaker notes, but also require a local https server. You can read more about this
in ServePostProcessorExample.

To make this clearer, let’s look at an example of how to get speaker notes working with a local copy of reveal.js:
SlidesWithNotesExample.

Note: In order to designate a mapping from notebook cells to Reveal.js slides, from within the Jupyter notebook,
select menu item View –> Cell Toolbar –> Slideshow. That will reveal a drop-down menu on the upper-right of each

6 Chapter 2. Using as a command line tool
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cell. From it, one may choose from “Slide,” “Sub-Slide”, “Fragment”, “Skip”, and “Notes.” On conversion, cells
designated as “skip” will not be included, “notes” will be included only in presenter notes, etc.

Example: creating slides w/ speaker notes

Let’s suppose you have a notebook your_talk.ipynb that you want to convert to slides. For this example, we’ll
assume that you are working in the same directory as the notebook you want to convert (i.e., when you run ls .,
your_talk.ipynb shows up amongst the list of files).

First, we need a copy of reveal.js in the same directory as your slides. One way to do this is to use the following
commands in your terminal:

git clone https://github.com/hakimel/reveal.js.git
cd reveal.js
git checkout 3.5.0
cd ..

Then we need to tell nbconvert to point to this local copy. To do that we use the --reveal-prefix command line
flag to point to the local copy.

jupyter nbconvert your_talk.ipynb --to slides --reveal-prefix reveal.js

This will create file your_talk.slides.html, which you should be able to access with open your_talk.
slides.html. To access the speaker notes, press s after the slides load and they should open in a new window.

Note: This does not enable slides that run completely offline. While you have a local copy of reveal.js, by default, the
slides need to access mathjax, require, and jquery via a public CDN. Addressing this use case is an open issue and PRs
are always encouraged.

Serving slides with an https server: --post serve

Once you have speaker notes working you may notice that your timers don’t work. Timers require a bit more infras-
tructure; you need to serve your local copy of reveal.js from a local https server.

Fortunately, nbconvert makes this fairly straightforward through the use of the ServePostProcessor. To
activate this server, we append the command line flag --post serve to our call to nbconvert.

jupyter nbconvert your_talk.ipynb --to slides --reveal-prefix reveal.js --post serve

This will run the server, which will occupy the terminal that you ran the command in until you stop it. You can stop
the server by pressing ctrl C twice.

2.2.5 Markdown

• --to markdown

Simple markdown output. Markdown cells are unaffected, and code cells indented 4 spaces. Images are output
as .png files in a folder.

2.2.6 Ascii

• --to asciidoc

Ascii output. Images are output as .png files in a folder.

2.2. Supported output formats 7
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2.2.7 reStructuredText

• --to rst

Basic reStructuredText output. Useful as a starting point for embedding notebooks in Sphinx docs. Images are
output as .png files in a folder.

Note: nbconvert uses pandoc to convert between various markup languages, so pandoc is a dependency when
converting to LaTeX or reStructuredText.

2.2.8 Executable script

• --to script

Convert a notebook to an executable script. This is the simplest way to get a Python (or other language, depend-
ing on the kernel) script out of a notebook. If there were any magics in an Jupyter notebook, this may only be
executable from a Jupyter session.

For example, to convert a Julia notebook to a Julia executable script:

jupyter nbconvert --to script my_julia_notebook.ipynb

2.2.9 Notebook and preprocessors

• --to notebook

New in version 3.0.

This doesn’t convert a notebook to a different format per se, instead it allows the running of nbconvert prepro-
cessors on a notebook, and/or conversion to other notebook formats. For example:

jupyter nbconvert --to notebook --execute mynotebook.ipynb

This will open the notebook, execute it, capture new output, and save the result in mynotebook.nbconvert.
ipynb. Specifying --inplace will overwrite the input file instead of writing a new file. By default, nbconvert
will abort conversion if any exceptions occur during execution of a cell. If you specify --allow-errors (in
addition to the –execute‘ flag) then conversion will continue and the output from any exception will be included in the
cell output.

The following command:

jupyter nbconvert --to notebook --nbformat 3 mynotebook

will create a copy of mynotebook.ipynb in mynotebook.v3.ipynb in version 3 of the notebook format.

If you want to convert a notebook in-place, you can specify the output file to be the same as the input file:

jupyter nbconvert --to notebook mynb --output mynb

Be careful with that, since it will replace the input file.

Note: nbconvert uses pandoc to convert between various markup languages, so pandoc is a dependency when con-
verting to latex or reStructuredText.

8 Chapter 2. Using as a command line tool
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The output file created by nbconvert will have the same base name as the notebook and will be placed in the current
working directory. Any supporting files (graphics, etc) will be placed in a new directory with the same base name as
the notebook, suffixed with _files:

$ jupyter nbconvert notebook.ipynb
$ ls
notebook.ipynb notebook.html notebook_files/

For simple single-file output, such as html, markdown, etc., the output may be sent to standard output with:

$ jupyter nbconvert --to markdown notebook.ipynb --stdout

2.3 Converting multiple notebooks

Multiple notebooks can be specified from the command line:

$ jupyter nbconvert notebook*.ipynb
$ jupyter nbconvert notebook1.ipynb notebook2.ipynb

or via a list in a configuration file, say mycfg.py, containing the text:

c = get_config()
c.NbConvertApp.notebooks = ["notebook1.ipynb", "notebook2.ipynb"]

and using the command:

$ jupyter nbconvert --config mycfg.py

2.3. Converting multiple notebooks 9



nbconvert Documentation, Release 5.5.0.dev0

10 Chapter 2. Using as a command line tool



CHAPTER

THREE

USING NBCONVERT AS A LIBRARY

In this notebook, you will be introduced to the programmatic API of nbconvert and how it can be used in various
contexts.

A great blog post by [@jakevdp](https://github.com/jakevdp) will be used to demonstrate. This notebook will not
focus on using the command line tool. The attentive reader will point-out that no data is read from or written to disk
during the conversion process. This is because nbconvert has been designed to work in memory so that it works well
in a database or web-based environment too.

3.1 Quick overview

Credit: Jonathan Frederic (@jdfreder on github)

The main principle of nbconvert is to instantiate an Exporter that controls the pipeline through which notebooks
are converted.

First, download @jakevdp’s notebook (if you do not have requests, install it by running pip install
requests, or if you don’t have pip installed, you can find it on PYPI):

[1]: from urllib.request import urlopen

url = 'http://jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb'
response = urlopen(url).read().decode()
response[0:60] + ' ...'

[1]: '{\n "metadata": {\n "name": "XKCD_plots"\n },\n "nbformat": 3,\n ...'

The response is a JSON string which represents a Jupyter notebook.

Next, we will read the response using nbformat. Doing this will guarantee that the notebook structure is valid. Note
that the in-memory format and on disk format are slightly different. In particual, on disk, multiline strings might be
split into a list of strings.

[2]: import nbformat
jake_notebook = nbformat.reads(response, as_version=4)
jake_notebook.cells[0]

[2]: {'cell_type': 'markdown',
'metadata': {},
'source': '# XKCD plots in Matplotlib'}

The nbformat API returns a special type of dictionary. For this example, you don’t need to worry about the details of
the structure (if you are interested, please see the nbformat documentation).

11
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The nbconvert API exposes some basic exporters for common formats and defaults. You will start by using one of
them. First, you will import one of these exporters (specifically, the HTML exporter), then instantiate it using most of
the defaults, and then you will use it to process the notebook we downloaded earlier.

[3]: from traitlets.config import Config

# 1. Import the exporter
from nbconvert import HTMLExporter

# 2. Instantiate the exporter. We use the `basic` template for now; we'll get into
→˓more details
# later about how to customize the exporter further.
html_exporter = HTMLExporter()
html_exporter.template_file = 'basic'

# 3. Process the notebook we loaded earlier
(body, resources) = html_exporter.from_notebook_node(jake_notebook)

The exporter returns a tuple containing the source of the converted notebook, as well as a resources dict. In this case,
the source is just raw HTML:

[4]: print(body[:400] + '...')

<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="XKCD-plots-in-Matplotlib">XKCD plots in Matplotlib<a class="anchor-link"
→˓href="#XKCD-plots-in-Matplotlib">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div cl...

If you understand HTML, you’ll notice that some common tags are omitted, like the body tag. Those tags are
included in the default HtmlExporter, which is what would have been constructed if we had not modified the
template_file.

The resource dict contains (among many things) the extracted .png, .jpg, etc. from the notebook when applicable.
The basic HTML exporter leaves the figures as embedded base64, but you can configure it to extract the figures. So
for now, the resource dict should be mostly empty, except for a key containing CSS and a few others whose content
will be obvious:

[5]: print("Resources:", resources.keys())
print("Metadata:", resources['metadata'].keys())
print("Inlining:", resources['inlining'].keys())
print("Extension:", resources['output_extension'])

Resources: dict_keys([’metadata’, ’output_extension’, ’raw_mimetypes’, ’inlining’])
Metadata: dict_keys([’name’])
Inlining: dict_keys([’css’])
Extension: .html

Exporters are stateless, so you won’t be able to extract any useful information beyond their configuration. You can
re-use an exporter instance to convert another notebook. In addition to the from_notebook_node used above,
each exporter exposes from_file and from_filename methods.

12 Chapter 3. Using nbconvert as a library
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3.2 Extracting Figures using the RST Exporter

When exporting, you may want to extract the base64 encoded figures as files. While the HTML exporter does not do
this by default, the RstExporter does:

[6]: # Import the RST exproter
from nbconvert import RSTExporter
# Instantiate it
rst_exporter = RSTExporter()
# Convert the notebook to RST format
(body, resources) = rst_exporter.from_notebook_node(jake_notebook)

print(body[:970] + '...')
print('[.....]')
print(body[800:1200] + '...')

XKCD plots in Matplotlib
========================

This notebook originally appeared as a blog post at `Pythonic
Perambulations <http://jakevdp.github.com/blog/2012/10/07/
→˓xkcd-style-plots-in-matplotlib/>`__
by Jake Vanderplas.

.. raw:: html

<!- PELICAN_BEGIN_SUMMARY ->

*Update: the matplotlib pull request has been merged! See* `*This
post* <http://jakevdp.github.io/blog/2013/07/10/XKCD-plots-in-matplotlib/>`__

*for a description of the XKCD functionality now built-in to
matplotlib!*

One of the problems I’ve had with typical matplotlib figures is that
everything in them is so precise, so perfect. For an example of what I
mean, take a look at this figure:

.. code:: python

from IPython.display import Image
Image(’http://jakevdp.github.com/figures/xkcd_version.png’)

.. image:: output_3_0.png

Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I’d rather just use
matp...
[...]
image:: output_3_0.png

(continues on next page)
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(continued from previous page)

Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I’d rather just use
matplotlib. The problem is, matplotlib is a bit too precise. Attempting
to duplicate this figure in matplotlib leads to something like this:

.. code:: python

Image(’http://jakevdp.github.com/figures/mpl_version.png’)

.. imag...

Notice that base64 images are not embedded, but instead there are filename-like strings, such as output_3_0.png.
The strings actually are (configurable) keys that map to the binary data in the resources dict.

Note, if you write an RST Plugin, you are responsible for writing all the files to the disk (or uploading, etc. . . ) in the
right location. Of course, the naming scheme is configurable.

As an exercise, this notebook will show you how to get one of those images. First, take a look at the 'outputs'
of the returned resources dictionary. This is a dictionary that contains a key for each extracted resource, with values
corresponding to the actual base64 encoding:

[7]: sorted(resources['outputs'].keys())

[7]: ['output_13_1.png',
'output_16_0.png',
'output_18_1.png',
'output_3_0.png',
'output_5_0.png']

In this case, there are 5 extracted binary figures, all pngs. We can use the Image display object to actually display one
of the images:

[8]: from IPython.display import Image
Image(data=resources['outputs']['output_3_0.png'], format='png')

[8]:
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Note that this image is being rendered without ever reading or writing to the disk.

3.3 Extracting Figures using the HTML Exporter

As mentioned above, by default, the HTML exporter does not extract images – it just leaves them as inline base64
encodings. However, this is not always what you might want. For example, here is a use case from @jakevdp:

I write an awesome blog using Jupyter notebooks converted to HTML, and I want the images to be cached.
Having one html file with all of the images base64 encoded inside it is nice when sharing with a coworker,
but for a website, not so much. I need an HTML exporter, and I want it to extract the figures!

3.3.1 Some theory

Before we get into actually extracting the figures, it will be helpful to give a high-level overview of the process of
converting a notebook to a another format:

1. Retrieve the notebook and it’s accompanying resources (you are responsible for this).

2. Feed the notebook into the Exporter, which:

1. Sequentially feeds the notebook into an array of Preprocessors. Preprocessors only act on the struc-
ture of the notebook, and have unrestricted access to it.

2. Feeds the notebook into the Jinja templating engine, which converts it to a particular format depending on
which template is selected.

3. The exporter returns the converted notebook and other relevant resources as a tuple.

4. You write the data to the disk using the built-in FilesWriter (which writes the notebook and any extracted
files to disk), or elsewhere using a custom Writer.

3.3.2 Using different preprocessors

To extract the figures when using the HTML exporter, we will want to change which Preprocessors
we are using. There are several preprocessors that come with nbconvert, including one called the
ExtractOutputPreprocessor.

The ExtractOutputPreprocessor is responsible for crawling the notebook, finding all of the figures, and
putting them into the resources directory, as well as choosing the key (i.e. filename_xx_y.extension) that
can replace the figure inside the template. To enable the ExtractOutputPreprocessor, we must add it to the
exporter’s list of preprocessors:

[9]: # create a configuration object that changes the preprocessors
from traitlets.config import Config
c = Config()
c.HTMLExporter.preprocessors = ['nbconvert.preprocessors.ExtractOutputPreprocessor']

# create the new exporter using the custom config
html_exporter_with_figs = HTMLExporter(config=c)
html_exporter_with_figs.preprocessors

[9]: ['nbconvert.preprocessors.ExtractOutputPreprocessor']

We can compare the result of converting the notebook using the original HTML exporter and our new customized one:

3.3. Extracting Figures using the HTML Exporter 15
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[10]: (_, resources) = html_exporter.from_notebook_node(jake_notebook)
(_, resources_with_fig) = html_exporter_with_figs.from_notebook_node(jake_notebook)

print("resources without figures:")
print(sorted(resources.keys()))

print("\nresources with extracted figures (notice that there's one more field called
→˓'outputs'):")
print(sorted(resources_with_fig.keys()))

print("\nthe actual figures are:")
print(sorted(resources_with_fig['outputs'].keys()))

resources without figures:
[’inlining’, ’metadata’, ’output_extension’, ’raw_mimetypes’]

resources with extracted figures (notice that there’s one more field called
→˓’outputs’):
[’inlining’, ’metadata’, ’output_extension’, ’outputs’, ’raw_mimetypes’]

the actual figures are:
[’output_13_1.png’, ’output_16_0.png’, ’output_18_1.png’, ’output_3_0.png’,
→˓’output_5_0.png’]

3.4 Custom Preprocessors

There are an endless number of transformations that you may want to apply to a notebook. In particularly complicated
cases, you may want to actually create your own Preprocessor. Above, when we customized the list of preproces-
sors accepted by the HTMLExporter, we passed in a string – this can be any valid module name. So, if you create
your own preprocessor, you can include it in that same list and it will be used by the exporter.

To create your own preprocessor, you will need to subclass from nbconvert.preprocessors.Preprocessor
and overwrite either the preprocess and/or preprocess_cell methods.

3.5 Example

The following demonstration adds the ability to exclude a cell by index.

Note: injecting cells is similar, and won’t be covered here. If you want to inject static content at the beginning/end of
a notebook, use a custom template.

[11]: from traitlets import Integer
from nbconvert.preprocessors import Preprocessor

class PelicanSubCell(Preprocessor):
"""A Pelican specific preprocessor to remove some of the cells of a notebook"""

# I could also read the cells from nb.metadata.pelican if someone wrote a JS
→˓extension,

# but for now I'll stay with configurable value.
start = Integer(0, help="first cell of notebook to be converted")
end = Integer(-1, help="last cell of notebook to be converted")
start.tag(config='True')

(continues on next page)
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(continued from previous page)

end.tag(config='True')

def preprocess(self, nb, resources):
self.log.info("I'll keep only cells from %d to %d", self.start, self.end)
nb.cells = nb.cells[self.start:self.end]
return nb, resources

Here a Pelican exporter is created that takes PelicanSubCell preprocessors and a config object as parameters.
This may seem redundant, but with the configuration system you can register an inactive preprocessor on all of the
exporters and activate it from config files or the command line.

[12]: # Create a new config object that configures both the new preprocessor, as well as
→˓the exporter
c = Config()
c.PelicanSubCell.start = 4
c.PelicanSubCell.end = 6
c.RSTExporter.preprocessors = [PelicanSubCell]

# Create our new, customized exporter that uses our custom preprocessor
pelican = RSTExporter(config=c)

# Process the notebook
print(pelican.from_notebook_node(jake_notebook)[0])

Sometimes when showing schematic plots, this is the type of figure I
want to display. But drawing it by hand is a pain: I’d rather just use
matplotlib. The problem is, matplotlib is a bit too precise. Attempting
to duplicate this figure in matplotlib leads to something like this:

.. code:: python

Image(’http://jakevdp.github.com/figures/mpl_version.png’)

.. image:: output_5_0.png

3.6 Programmatically creating templates

[13]: from jinja2 import DictLoader

dl = DictLoader({'full.tpl':
"""
{%- extends 'basic.tpl' -%}

{% block footer %}
FOOOOOOOOTEEEEER
{% endblock footer %}
"""})

(continues on next page)
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(continued from previous page)

exportHTML = HTMLExporter(extra_loaders=[dl])
(body, resources) = exportHTML.from_notebook_node(jake_notebook)
for l in body.split('\n')[-4:]:

print(l)

</div>
</div>
FOOOOOOOOTEEEEER

3.7 Real World Uses

@jakevdp uses Pelican and Jupyter Notebook to blog. Pelican will use nbconvert programmatically to generate blog
post. Have a look a Pythonic Preambulations for Jake’s blog post.

@damianavila wrote the Nikola Plugin to write blog post as Notebooks and is developping a js-extension to publish
notebooks via one click from the web app.

As @Mbussonn requested. . . easieeeeer! Deploy your Nikola site with just a click in the IPython notebook! http:
//t.co/860sJunZvj cc @ralsina

— Damián Avila (@damian_avila) August 21, 2013
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CHAPTER

FOUR

LATEX CITATIONS

nbconvert now has support for LaTeX citations. With this capability you can:

• Manage citations using BibTeX.

• Cite those citations in Markdown cells using HTML data attributes.

• Have nbconvert generate proper LaTeX citations and run BibTeX.

For an example of how this works, please see the citations example in the nbconvert-examples repository.
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CHAPTER

FIVE

EXECUTING NOTEBOOKS

Jupyter notebooks are often saved with output cells that have been cleared. nbconvert provides a convenient way to
execute the input cells of an .ipynb notebook file and save the results, both input and output cells, as a .ipynb file.

In this section we show how to execute a .ipynb notebook document saving the result in notebook format. If you
need to export notebooks to other formats, such as reStructured Text or Markdown (optionally executing them) see
section Using nbconvert as a library.

Executing notebooks can be very helpful, for example, to run all notebooks in Python library in one step, or as a way
to automate the data analysis in projects involving more than one notebook.

5.1 Executing notebooks from the command line

The same functionality of executing notebooks is exposed through a command line interface or a Python API interface.
As an example, a notebook can be executed from the command line with:

jupyter nbconvert --to notebook --execute mynotebook.ipynb

5.2 Executing notebooks using the Python API interface

This section will illustrate the Python API interface.

5.2.1 Example

Let’s start with a complete quick example, leaving detailed explanations to the following sections.

Import: First we import nbconvert and the ExecutePreprocessor class:

import nbformat
from nbconvert.preprocessors import ExecutePreprocessor

Load: Assuming that notebook_filename contains the path of a notebook, we can load it with:

with open(notebook_filename) as f:
nb = nbformat.read(f, as_version=4)

Configure: Next, we configure the notebook execution mode:

ep = ExecutePreprocessor(timeout=600, kernel_name='python3')
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We specified two (optional) arguments timeout and kernel_name, which define respectively the cell execution
timeout and the execution kernel.

The option to specify kernel_name is new in nbconvert 4.2. When not specified or when using nbconvert
<4.2, the default Python kernel is chosen.

Execute/Run (preprocess): To actually run the notebook we call the method preprocess:

ep.preprocess(nb, {'metadata': {'path': 'notebooks/'}})

Hopefully, we will not get any errors during the notebook execution (see the last section for error handling). Note that
path specifies in which folder to execute the notebook.

Save: Finally, save the resulting notebook with:

with open('executed_notebook.ipynb', 'w', encoding='utf-8') as f:
nbformat.write(nb, f)

That’s all. Your executed notebook will be saved in the current folder in the file executed_notebook.ipynb.

5.3 Execution arguments (traitlets)

The arguments passed to ExecutePreprocessor are configuration options called traitlets. There are many cool
things about traitlets. For example, they enforce the input type, and they can be accessed/modified as class attributes.
Moreover, each traitlet is automatically exposed as command-line options. For example, we can pass the timeout from
the command-line like this:

jupyter nbconvert --ExecutePreprocessor.timeout=600 --to notebook --execute
→˓mynotebook.ipynb

Let’s now discuss in more detail the two traitlets we used.

The timeout traitlet defines the maximum time (in seconds) each notebook cell is allowed to run, if the execution
takes longer an exception will be raised. The default is 30 s, so in cases of long-running cells you may want to specify
an higher value. The timeout option can also be set to None or -1 to remove any restriction on execution time.

The second traitlet, kernel_name, allows specifying the name of the kernel to be used for the execution. By
default, the kernel name is obtained from the notebook metadata. The traitlet kernel_name allows specifying a
user-defined kernel, overriding the value in the notebook metadata. A common use case is that of a Python 2/3 library
which includes documentation/testing notebooks. These notebooks will specify either a python2 or python3 kernel in
their metadata (depending on the kernel used the last time the notebook was saved). In reality, these notebooks will
work on both Python 2 and Python 3, and, for testing, it is important to be able to execute them programmatically on
both versions. Here the traitlet kernel_name helps simplify and maintain consistency: we can just run a notebook
twice, specifying first “python2” and then “python3” as the kernel name.

5.4 Handling errors and exceptions

In the previous sections we saw how to save an executed notebook, assuming there are no execution errors. But, what
if there are errors?

5.4.1 Execution until first error

An error during the notebook execution, by default, will stop the execution and raise a CellExecutionError.
Conveniently, the source cell causing the error and the original error name and message are also printed. After an
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error, we can still save the notebook as before:

with open('executed_notebook.ipynb', mode='w', encoding='utf-8') as f:
nbformat.write(nb, f)

The saved notebook contains the output up until the failing cell, and includes a full stack-trace and error (which can
help debugging).

5.4.2 Handling errors

A useful pattern to execute notebooks while handling errors is the following:

from nbconvert.preprocessors import CellExecutionError

try:
out = ep.preprocess(nb, {'metadata': {'path': run_path}})

except CellExecutionError:
out = None
msg = 'Error executing the notebook "%s".\n\n' % notebook_filename
msg += 'See notebook "%s" for the traceback.' % notebook_filename_out
print(msg)
raise

finally:
with open(notebook_filename_out, mode='w', encoding='utf-8') as f:

nbformat.write(nb, f)

This will save the executed notebook regardless of execution errors. In case of errors, however, an additional message
is printed and the CellExecutionError is raised. The message directs the user to the saved notebook for further
inspection.

5.4.3 Execute and save all errors

As a last scenario, it is sometimes useful to execute notebooks which raise exceptions, for example to show an error
condition. In this case, instead of stopping the execution on the first error, we can keep executing the notebook using
the traitlet allow_errors (default is False). With allow_errors=True, the notebook is executed until the end,
regardless of any error encountered during the execution. The output notebook, will contain the stack-traces and error
messages for all the cells raising exceptions.

5.5 Widget state

If your notebook contains any Jupyter Widgets, the state of all the widgets can be stored in the notebook’s metadata.
This allows rendering of the live widgets on for instance nbviewer, or when converting to html.

We can tell nbconvert to not store the state using the store_widget_state argument:

jupyter nbconvert --ExecutePreprocessor.store_widget_state=False --to notebook --
→˓execute mynotebook.ipynb

This widget rendering is not performed against a browser during execution, so only widget default states or states ma-
nipulated via user code will be calculated during execution. %%javascript cells will execute upon notebook rendering,
enabling complex interactions to function as expected when viewed by a UI.

If you can’t view widget results after execution, you may need to select Trust Notebook under the File menu.

5.5. Widget state 23
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CHAPTER

SIX

CONFIGURATION OPTIONS

Configuration options may be set in a file, ~/.jupyter/jupyter_nbconvert_config.py, or at the com-
mand line when starting nbconvert, i.e. jupyter nbconvert --Application.log_level=10.

Application.log_datefmt [Unicode] Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

Application.log_format [Unicode] Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

Application.log_level [0|10|20|30|40|50|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’] Default: 30

Set the log level by value or name.

JupyterApp.answer_yes [Bool] Default: False

Answer yes to any prompts.

JupyterApp.config_file [Unicode] Default: ''

Full path of a config file.

JupyterApp.config_file_name [Unicode] Default: ''

Specify a config file to load.

JupyterApp.generate_config [Bool] Default: False

Generate default config file.

NbConvertApp.export_format [Unicode] Default: 'html'

The export format to be used, either one of the built-in formats [‘asciidoc’, ‘custom’, ‘html’, ‘latex’, ‘mark-
down’, ‘notebook’, ‘pdf’, ‘python’, ‘rst’, ‘script’, ‘slides’] or a dotted object name that represents the import
path for an Exporter class

NbConvertApp.from_stdin [Bool] Default: False

read a single notebook from stdin.

NbConvertApp.ipywidgets_base_url [Unicode] Default: 'https://unpkg.com/'

URL base for ipywidgets package

NbConvertApp.notebooks [List] Default: []

List of notebooks to convert. Wildcards are supported. Filenames passed positionally will be added to the list.

NbConvertApp.output_base [Unicode] Default: ''

overwrite base name use for output files. can only be used when converting one notebook at a time.
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NbConvertApp.output_files_dir [Unicode] Default: '{notebook_name}_files'

Directory to copy extra files (figures) to. ‘{notebook_name}’ in the string will be converted to notebook base-
name

NbConvertApp.postprocessor_class [DottedOrNone] Default: ''

PostProcessor class used to write the results of the conversion

NbConvertApp.use_output_suffix [Bool] Default: True

Whether to apply a suffix prior to the extension (only relevant when converting to notebook format). The suffix
is determined by the exporter, and is usually ‘.nbconvert’.

NbConvertApp.writer_class [DottedObjectName] Default: 'FilesWriter'

Writer class used to write the results of the conversion

NbConvertBase.default_language [Unicode] Default: 'ipython'

Deprecated default highlight language as of 5.0, please use language_info metadata instead

NbConvertBase.display_data_priority [List] Default: ['text/html', 'application/pdf', 'text/
latex', 'image/svg+xml...

An ordered list of preferred output type, the first encountered will usually be used when converting discarding
the others.

Exporter.default_preprocessors [List] Default: ['nbconvert.preprocessors.
TagRemovePreprocessor', 'nbconvert....

List of preprocessors available by default, by name, namespace, instance, or type.

Exporter.file_extension [FilenameExtension] Default: '.txt'

Extension of the file that should be written to disk

Exporter.preprocessors [List] Default: []

List of preprocessors, by name or namespace, to enable.

TemplateExporter.exclude_code_cell [Bool] Default: False

This allows you to exclude code cells from all templates if set to True.

TemplateExporter.exclude_input [Bool] Default: False

This allows you to exclude code cell inputs from all templates if set to True.

TemplateExporter.exclude_input_prompt [Bool] Default: False

This allows you to exclude input prompts from all templates if set to True.

TemplateExporter.exclude_markdown [Bool] Default: False

This allows you to exclude markdown cells from all templates if set to True.

TemplateExporter.exclude_output [Bool] Default: False

This allows you to exclude code cell outputs from all templates if set to True.

TemplateExporter.exclude_output_prompt [Bool] Default: False

This allows you to exclude output prompts from all templates if set to True.

TemplateExporter.exclude_raw [Bool] Default: False

This allows you to exclude raw cells from all templates if set to True.
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TemplateExporter.exclude_unknown [Bool] Default: False

This allows you to exclude unknown cells from all templates if set to True.

TemplateExporter.filters [Dict] Default: {}

Dictionary of filters, by name and namespace, to add to the Jinja environment.

TemplateExporter.raw_mimetypes [List] Default: []

formats of raw cells to be included in this Exporter’s output.

TemplateExporter.template_extension [Unicode] Default: '.tpl'

No description

TemplateExporter.template_file [Unicode] Default: ''

Name of the template file to use

TemplateExporter.template_path [List] Default: ['.']

No description

HTMLExporter.anchor_link_text [Unicode] Default: '¶'

The text used as the text for anchor links.

LatexExporter.template_extension [Unicode] Default: '.tplx'

No description

NotebookExporter.nbformat_version [1|2|3|4] Default: 4

The nbformat version to write. Use this to downgrade notebooks.

PDFExporter.bib_command [List] Default: ['bibtex', '{filename}']

Shell command used to run bibtex.

PDFExporter.latex_command [List] Default: ['xelatex', '{filename}', '-quiet']

Shell command used to compile latex.

PDFExporter.latex_count [Int] Default: 3

How many times latex will be called.

PDFExporter.verbose [Bool] Default: False

Whether to display the output of latex commands.

SlidesExporter.font_awesome_url [Unicode] Default: 'https://cdnjs.cloudflare.com/ajax/libs/
font-awesome/4.7.0/cs...

URL to load font awesome from.

Defaults to loading from cdnjs.

SlidesExporter.jquery_url [Unicode] Default: 'https://cdnjs.cloudflare.com/ajax/libs/
jquery/2.0.3/jquery.m...

URL to load jQuery from.

Defaults to loading from cdnjs.

SlidesExporter.require_js_url [Unicode] Default: 'https://cdnjs.cloudflare.com/ajax/libs/
require.js/2.1.10/req...

URL to load require.js from.
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Defaults to loading from cdnjs.

SlidesExporter.reveal_scroll [Bool] Default: False

If True, enable scrolling within each slide

SlidesExporter.reveal_theme [Unicode] Default: 'simple'

Name of the reveal.js theme to use.

We look for a file with this name under reveal_url_prefix/css/theme/reveal_theme.css.

https://github.com/hakimel/reveal.js/tree/master/css/theme has list of themes that ship by default with reveal.js.

SlidesExporter.reveal_transition [Unicode] Default: 'slide'

Name of the reveal.js transition to use.

The list of transitions that ships by default with reveal.js are: none, fade, slide, convex, concave and zoom.

SlidesExporter.reveal_url_prefix [Unicode] Default: ''

The URL prefix for reveal.js (version 3.x). This defaults to the reveal CDN, but can be any url pointing to a
copy of reveal.js.

For speaker notes to work, this must be a relative path to a local copy of reveal.js: e.g., “reveal.js”.

If a relative path is given, it must be a subdirectory of the current directory (from which the server is run).

See the usage documentation (https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow)
for more details.

Preprocessor.enabled [Bool] Default: False

No description

CSSHTMLHeaderPreprocessor.highlight_class [Unicode] Default: '.highlight'

CSS highlight class identifier

CSSHTMLHeaderPreprocessor.style [Unicode] Default: 'default'

Name of the pygments style to use

ClearOutputPreprocessor.remove_metadata_fields [Set] Default: {'scrolled', 'collapsed'}

No description

ConvertFiguresPreprocessor.from_format [Unicode] Default: ''

Format the converter accepts

ConvertFiguresPreprocessor.to_format [Unicode] Default: ''

Format the converter writes

ExecutePreprocessor.allow_errors [Bool] Default: False

If False (default), when a cell raises an error the execution is stopped and a CellExecutionError is raised. If
True, execution errors are ignored and the execution is continued until the end of the notebook. Output from
exceptions is included in the cell output in both cases.

ExecutePreprocessor.force_raise_errors [Bool] Default: False

If False (default), errors from executing the notebook can be allowed with a raises-exception tag on a single
cell, or the allow_errors configurable option for all cells. An allowed error will be recorded in notebook output,
and execution will continue. If an error occurs when it is not explicitly allowed, a CellExecutionError will be
raised. If True, CellExecutionError will be raised for any error that occurs while executing the notebook. This
overrides both the allow_errors option and the raises-exception cell tag.
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ExecutePreprocessor.interrupt_on_timeout [Bool] Default: False

If execution of a cell times out, interrupt the kernel and continue executing other cells rather than throwing an
error and stopping.

ExecutePreprocessor.iopub_timeout [Int] Default: 4

The time to wait (in seconds) for IOPub output. This generally doesn’t need to be set, but on some slow networks
(such as CI systems) the default timeout might not be long enough to get all messages.

ExecutePreprocessor.kernel_manager_class [Type] Default: 'builtins.object'

The kernel manager class to use.

ExecutePreprocessor.kernel_name [Unicode] Default: ''

Name of kernel to use to execute the cells. If not set, use the kernel_spec embedded in the notebook.

ExecutePreprocessor.raise_on_iopub_timeout [Bool] Default: False

If False (default), then the kernel will continue waiting for iopub messages until it receives a kernel idle message,
or until a timeout occurs, at which point the currently executing cell will be skipped. If True, then an error will
be raised after the first timeout. This option generally does not need to be used, but may be useful in contexts
where there is the possibility of executing notebooks with memory-consuming infinite loops.

ExecutePreprocessor.shutdown_kernel [‘graceful’|’immediate’] Default: 'graceful'

If graceful (default), then the kernel is given time to clean up after executing all cells, e.g., to execute its atexit
hooks. If immediate, then the kernel is signaled to immediately terminate.

ExecutePreprocessor.startup_timeout [Int] Default: 60

The time to wait (in seconds) for the kernel to start. If kernel startup takes longer, a RuntimeError is raised.

ExecutePreprocessor.store_widget_state [Bool] Default: True

If True (default), then the state of the Jupyter widgets created at the kernel will be stored in the metadata of the
notebook.

ExecutePreprocessor.timeout [Int] Default: 30

The time to wait (in seconds) for output from executions. If a cell execution takes longer, an exception (Time-
outError on python 3+, RuntimeError on python 2) is raised.

None or -1 will disable the timeout. If timeout_func is set, it overrides timeout.

ExecutePreprocessor.timeout_func [Any] Default: None

A callable which, when given the cell source as input, returns the time to wait (in seconds) for output from cell
executions. If a cell execution takes longer, an exception (TimeoutError on python 3+, RuntimeError on python
2) is raised.

Returning None or -1 will disable the timeout for the cell. Not setting timeout_func will cause the preprocessor
to default to using the timeout trait for all cells. The timeout_func trait overrides timeout if it is not None.

ExtractOutputPreprocessor.extract_output_types [Set] Default: {'image/svg+xml', 'image/jpeg',
'application/pdf', 'image/png'}

No description

ExtractOutputPreprocessor.output_filename_template [Unicode] Default: '{unique_key}_{cell_index}_{index}{extension}'

No description

HighlightMagicsPreprocessor.languages [Dict] Default: {}
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Syntax highlighting for magic’s extension languages. Each item associates a language magic extension such as
%%R, with a pygments lexer such as r.

LatexPreprocessor.style [Unicode] Default: 'default'

Name of the pygments style to use

RegexRemovePreprocessor.patterns [List] Default: []

No description

SVG2PDFPreprocessor.command [Unicode] Default: ''

The command to use for converting SVG to PDF

This string is a template, which will be formatted with the keys to_filename and from_filename.

The conversion call must read the SVG from {from_flename}, and write a PDF to {to_filename}.

SVG2PDFPreprocessor.inkscape [Unicode] Default: ''

The path to Inkscape, if necessary

TagRemovePreprocessor.remove_all_outputs_tags [Set] Default: set()

Tags indicating cells for which the outputs are to be removed,matches tags in cell.metadata.tags.

TagRemovePreprocessor.remove_cell_tags [Set] Default: set()

Tags indicating which cells are to be removed,matches tags in cell.metadata.tags.

TagRemovePreprocessor.remove_input_tags [Set] Default: set()

Tags indicating cells for which input is to be removed,matches tags in cell.metadata.tags.

TagRemovePreprocessor.remove_single_output_tags [Set] Default: set()

Tags indicating which individual outputs are to be removed,matches output i tags in
cell.outputs[i].metadata.tags.

WriterBase.files [List] Default: []

List of the files that the notebook references. Files will be included with written output.

FilesWriter.build_directory [Unicode] Default: ''

Directory to write output(s) to. Defaults to output to the directory of each notebook. To recover previous default
behaviour (outputting to the current working directory) use . as the flag value.

FilesWriter.relpath [Unicode] Default: ''

When copying files that the notebook depends on, copy them in relation to this path, such that the destination
filename will be os.path.relpath(filename, relpath). If FilesWriter is operating on a notebook that already exists
elsewhere on disk, then the default will be the directory containing that notebook.

ServePostProcessor.browser [Unicode] Default: ''

Specify what browser should be used to open slides. See https://docs.python.org/3/library/webbrowser.html#
webbrowser.register to see how keys are mapped to browser executables. If not specified, the default browser
will be determined by the webbrowser standard library module, which allows setting of the BROWSER envi-
ronment variable to override it.

ServePostProcessor.ip [Unicode] Default: '127.0.0.1'

The IP address to listen on.

ServePostProcessor.open_in_browser [Bool] Default: True

Should the browser be opened automatically?
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ServePostProcessor.port [Int] Default: 8000

port for the server to listen on.

ServePostProcessor.reveal_cdn [Unicode] Default: 'https://cdnjs.cloudflare.com/ajax/libs/
reveal.js/3.5.0'

URL for reveal.js CDN.

ServePostProcessor.reveal_prefix [Unicode] Default: 'reveal.js'

URL prefix for reveal.js
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CHAPTER

SEVEN

CUSTOMIZING NBCONVERT

Under the hood, nbconvert uses Jinja templates to specify how the notebooks should be formatted. These templates
can be fully customized, allowing you to use nbconvert to create notebooks in different formats with different styles
as well.

7.1 Converting a notebook to an (I)Python script and printing to std-
out

Out of the box, nbconvert can be used to convert notebooks to plain Python files. For example, the following command
converts the example.ipynb notebook to Python and prints out the result:

[1]: !jupyter nbconvert --to python 'example.ipynb' --stdout

[NbConvertApp] Converting notebook example.ipynb to python

# coding: utf-8

# # Example notebook

# ### Markdown cells
#
# This is an example notebook that can be converted with `nbconvert` to different
→˓formats. This is an example of a markdown cell.

# ### LaTeX Equations
#
# Here is an equation:
#
# $$
# y = \sin(x)
# $$

# ### Code cells

# In[1]:

print("This is a code cell that produces some output")

# ### Inline figures

(continues on next page)
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(continued from previous page)

# In[1]:

import matplotlib.pyplot as plt
import numpy as np
plt.ion()

x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
plt.plot(x, y)

From the code, you can see that non-code cells are also exported. If you wanted to change that behaviour, you would
first look to nbconvert configuration options page to see if there is an option available that can give you your desired
behaviour.

In this case, if you wanted to remove code cells from the output, you could use the TemplateExporter.
exclude_markdown traitlet directly, as below.

[2]: !jupyter nbconvert --to python 'example.ipynb' --stdout --TemplateExporter.exclude_
→˓markdown=True

[NbConvertApp] Converting notebook example.ipynb to python

# coding: utf-8

# In[1]:

print("This is a code cell that produces some output")

# In[1]:

import matplotlib.pyplot as plt
import numpy as np
plt.ion()

x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
plt.plot(x, y)

7.2 Custom Templates

As mentioned above, if you want to change this behavior, you can use a custom template. The custom template inherits
from the Python template and overwrites the markdown blocks so that they are empty.

Below is an example of a custom template, which we write to a file called simplepython.tpl. This template
removes markdown cells from the output, and also changes how the execution count numbers are formatted:

[3]: %%writefile simplepython.tpl

{% extends 'python.tpl'%}

(continues on next page)
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(continued from previous page)

## remove markdown cells
{% block markdowncell %}
{% endblock markdowncell %}

## change the appearance of execution count
{% block in_prompt %}
# [{{ cell.execution_count if cell.execution_count else ' ' }}]:
{% endblock in_prompt %}

Overwriting simplepython.tpl

Using this template, we see that the resulting Python code does not contain anything that was previously in a markdown
cell, and only displays execution counts (i.e., [#]: not In[#]:):

[4]: !jupyter nbconvert --to python 'example.ipynb' --stdout --template=simplepython.tpl

[NbConvertApp] Converting notebook example.ipynb to python

# coding: utf-8

# [1]:

print("This is a code cell that produces some output")

# [1]:

import matplotlib.pyplot as plt
import numpy as np
plt.ion()

x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
plt.plot(x, y)

7.3 Template structure

Nbconvert templates consist of a set of nested blocks. When defining a new template, you extend an existing template
by overriding some of the blocks.

All the templates shipped in nbconvert have the basic structure described here, though some may define additional
blocks.

[5]: from IPython.display import HTML, display
with open('template_structure.html') as f:

display(HTML(f.read()))

<IPython.core.display.HTML object>
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7.3.1 A few gotchas

Jinja blocks use {% %} by default which does not play nicely with LaTeX, so those are replaced by ((* *)) in
LaTeX templates.

7.4 Templates using cell tags

The notebook file format supports attaching arbitrary JSON metadata to each cell. In addition, every cell has a special
tags metadata field that accepts a list of strings that indicate the cell’s tags. To apply these, go to the View →
CellToolbar → Tags option which will create a Tag editor at the top of every cell.

First choose a notebook you want to convert to html, and apply the tags: "Easy", "Medium", or "Hard".

With this in place, the notebook can be converted using a custom template.

Design your template in the cells provided below.

Hint: tags are located at cell.metadata.tags, the following Python code collects the value of the tag:

cell['metadata'].get('tags', [])

Which you can then use inside a Jinja template as in the following:

[6]: %%writefile mytemplate.tpl

{% extends 'full.tpl'%}
{% block any_cell %}
{% if 'Hard' in cell['metadata'].get('tags', []) %}

<div style="border:thin solid red">
{{ super() }}

</div>
{% elif 'Medium' in cell['metadata'].get('tags', []) %}

<div style="border:thin solid orange">
{{ super() }}

</div>
{% elif 'Easy' in cell['metadata'].get('tags', []) %}

<div style="border:thin solid green">
{{ super() }}

</div>
{% else %}

{{ super() }}
{% endif %}
{% endblock any_cell %}

Overwriting mytemplate.tpl

Now, if we collect the result of using nbconvert with this template, and display the resulting html, we see the following:

[7]: example = !jupyter nbconvert --to html 'example.ipynb' --template=mytemplate.tpl --
→˓stdout
example = example[3:] # have to remove the first three lines which are not proper html
from IPython.display import HTML, display
display(HTML('\n'.join(example)))

<IPython.core.display.HTML object>
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7.5 Templates using custom cell metadata

We demonstrated above how to use cell tags in a template to apply custom styling to a notebook. But remember, the
notebook file format supports attaching arbitrary JSON metadata to each cell, not only cell tags. Here, we describe
an exercise for using an example.difficulty metadata field (rather than cell tags) to do the same as before (to
mark up different cells as being “Easy”, “Medium” or “Hard”).

7.5.1 How to edit cell metadata

To edit the cell metadata from within the notebook, go to the menu item: View → Cell Toolbar → Edit
Metadata. This will bring up a toolbar above each cell with a button that says “Edit Metadata”. Click this button,
and a field will pop up in which you will directly edit the cell metadata JSON.

NB: Because it is JSON, you will need to ensure that what you write is valid JSON.

7.5.2 Template challenges: dealing with missing custom metadata fields

One of the challenges of dealing with custom metadata is to handle the case where the metadata is not present on every
cell. This can get somewhat tricky because of JSON objects tendency to be deeply nested coupled with Python’s (and
therefore Jinja’s) approach to calling into dictionaries. Specifically, the following code will error:

foo = {}
foo["bar"]

Accordingly, it is better to use the `{}.get method <https://docs.python.org/3.6/library/stdtypes.html#dict.get>‘__
which allows you to set a default value to return if no key is found as the second argument.

Hint: if your metadata items are located at cell.metadata.example.difficulty, the following Python code
would get the value defaulting to an empty string ('') if nothing is found:

cell['metadata'].get('example', {}).get('difficulty', '')

7.5.3 Exercise: Write a template for handling custom metadata

Now, write a template that will look for Easy, Medium and Hard metadata values for the cell.metadata.
example.difficulty field and wrap them in a div with a green, orange, or red thin solid border (respectively).

NB: This is the same design and logic as used in the previous cell tag example.

How to get example.ipynb

We have provided an example file in example.ipynb in the nbconvert documentation that has already been marked
up with both tags and the above metadata for you to test with. You can get it from this link to the raw file or by cloning
the repository from GitHub and navingating to nbconvert/docs/source/example.ipynb.

Convert example.ipynb using cell tags

First, make sure that you can reproduce the previous result using the cell tags template that we have provided above.

Easy: If you want to make it easy on yourself, create a new file my_template.tpl in the same directory as
example.ipynb and copy the contents of the cell we use to write mytemplate.tpl to the file system.
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Then run jupyter nbconvert --to html 'example.ipynb' --template=mytemplate.tpl and
see if your

Moderate: If you want more of a challenge, try recreating the jinja template by modifying the following jinja template
file:

{% extends 'full.tpl'%}
{% block any_cell %}

<div style="border:thin solid red">
{{ super() }}

</div>
{% endblock any_cell %}

Hard: If you want even more of a challenge, try recreating the jinja template from scratch.

Write your template

Once you’ve done at least the Easy version of the previous step, try modifying your template to use cell.
metadata.example.difficulty fields rather than cell tags.

Convert example.ipynb with formatting from custom metadata

Once you’ve written your template, try converting example.ipynb using the following command (making sure
that your_template.tpl is in your local directory where you are running the command):

jupyter nbconvert --to html 'example.ipynb' --template=your_template.tpl --stdout

The resulting display should pick out different cells to be bordered with green, orange, or red.

If you do that successfullly, the resulting html document should look like the following cell’s contents:

example

<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?
→˓config=TeX-AMS_HTML"></script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({

tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true

},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": {

styles: {'.MathJax_Display': {"margin": 0}},
linebreaks: { automatic: true }

}
});
</script>
<!-- End of mathjax configuration --></head>

<div style="border:thin solid red">
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Example notebook¶

</div>

Markdown cells¶

This is an example notebook that can be converted with nbconvert to different formats. This is an example of a
markdown cell.

LaTeX Equations¶

Here is an equation:

𝑦 = sin(𝑥)

<div style="border:thin solid green">

Code cells¶

</div>

In [1]:

Inline figures¶

<div style="border:thin solid orange">

In [1]:

Out[1]:

</div>

In [ ]:

</div>
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CHAPTER

EIGHT

CUSTOMIZING EXPORTERS

New in version 4.2: You can now use the --to flag to use custom export formats defined outside nbconvert.

The command-line syntax to run the nbconvert script is:

jupyter nbconvert --to FORMAT notebook.ipynb

This will convert the Jupyter document file notebook.ipynb into the output format designated by the FORMAT
string as explained below.

8.1 Extending the built-in format exporters

A few built-in formats are available by default: html, pdf, script, latex. Each of these has its own exporter with many
configuration options that can be extended. Having the option to point to a different exporter allows authors to create
their own fully customized templates or export formats.

A custom exporter must be an importable Python object. We recommend that these be distributed as Python libraries.

8.2 Registering a custom exporter as an entry point

Additional exporters may be registered as named entry_points. nbconvert uses the nbconvert.exporters entry
point to find exporters from any package you may have installed.

If you are writing a Python package that provides custom exporters, you can register the custom exporters in your
package’s setup.py. For example, your package may contain two custom exporters, named “simple” and “detail”,
and can be registered in your package’s setup.py as follows:

setup(
...
entry_points = {

'nbconvert.exporters': [
'simple = mymodule:SimpleExporter',
'detail = mymodule:DetailExporter',

],
}

)

Now people who have installed your Python package containing the two custom exporters can call the entry point
name:

jupyter nbconvert --to detail mynotebook.ipynb
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instead of having to specify the full import name of the custom exporter.

8.3 Using a custom exporter without entrypoints

We encourage registering custom exporters as entry points as described in the previous section. Registering a custom
exporter with an entry point simplifies using the exporter. If a custom exporter has not been registered with an entry
point, the exporter can still be used by providing the fully qualified name of this exporter as the argument of the --to
flag when running from the command line:

$ jupyter nbconvert --to <full.qualified.name of custom exporter> notebook.ipynb

For example, assuming a library tcontrib has a custom exporter name TExporter, you would convert to this custom
format using the following:

$ jupyter nbconvert --to tcontrib.TExporter notebook.ipynb

A library can contain multiple exporters. Creators of custom exporters should make sure that all other flags of the
command line behave the same for the custom exporters as for built-in exporters.
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NINE

PARAMETERS CONTROLLED BY AN EXTERNAL EXPORTER

An external exporter can control almost any parameter of the notebook conversion process, from simple parameters
such as the output file extension, to more complex ones such as the execution of the notebook or a custom rendering
template.

All external exporters can expose custom options using the traitlets configurable API. Refer to the library that
provides these exporters for details on how these configuration options works.

You can use the Jupyter configuration files to configure an external exporter. As for any nbconvert exporters you
can use either the configuration file syntax of c.MyExporter.config_option=value or the command line
flag form --MyExporter.config_option=value.
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CHAPTER

TEN

WRITING A CUSTOM EXPORTER

Under the hood exporters are python classes that expose a certain interface. Any importable classes that expose this
interface can be use as an exporter for nbconvert.

For simplicity we expose basic classes that implement all the relevant methods that you have to subclass and overwrite
just the relevant methods to provide a custom exporter. Below we show you the step to create a custom exporter that
provides a custom file extension, and a custom template that inserts before and after each markdown cell.

We will lay out files to be ready for Python packaging and distributing on PyPI, although the exact art of Python
packaging is beyond the scope of this explanation.

We will use the following layout for our package to expose a custom exporter:

mypackage
LICENSE.md
setup.py
mypackage

__init__.py
templates

test_template.tpl

If you wished to create this same directory structure you could use the following commands when you are at the
directory under which you wish to build your mypackage package:

mkdir -p mypackage/mypackage/templates
touch mypackage/LICENSE.md
touch mypackage/setup.py
touch mypackage/mypackage/__init__.py
touch mypackage/mypackage/templates/test_template.tpl

Important: You should not publish this package without adding content to your LICENSE.md file. For example,
nbconvert follows the Jupyter Project convention of using a Modified BSD License (also known as New or Revised
or 3-Clause BSD). For a guide on picking the right license for your use case, please see choose a license. If you do
not specify the license, your code may be unusable by many open source projects.

As you can see the layout is relatively simple, in the case where a template is not needed we would actually have
only one file with an Exporter implementation. Of course you can change the layout of your package to have a more
fine-grained structure of the subpackage. But lets see what a minimum example looks like.

We are going to write an exporter that:

• exports to html, so we will reuse the built-in html exporter

• changes the file extension to .test_ext
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# file __init__.py
import os
import os.path

from traitlets.config import Config
from nbconvert.exporters.html import HTMLExporter

#-----------------------------------------------------------------------------
# Classes
#-----------------------------------------------------------------------------

class MyExporter(HTMLExporter):
"""
My custom exporter
"""

# If this custom exporter should add an entry to the
# "File -> Download as" menu in the notebook, give it a name here in the
# `export_from_notebook` class member
export_from_notebook = "My format"

def _file_extension_default(self):
"""
The new file extension is `.test_ext`
"""
return '.test_ext'

@property
def template_path(self):

"""
We want to inherit from HTML template, and have template under
`./templates/` so append it to the search path. (see next section)
"""
return super().template_path+[os.path.join(os.path.dirname(__file__),

→˓"templates")]

def _template_file_default(self):
"""
We want to use the new template we ship with our library.
"""
return 'test_template' # full

And the template file, that inherits from the html full template and prepend/append text to each markdown cell (see
Jinja2 docs for template syntax):

{% extends "full.tpl" %}

{% block markdowncell -%}

## this is a markdown cell
{{ super() }}
## THIS IS THE END

{% endblock markdowncell %}

Assuming you install this package locally, or from PyPI, you can now use:
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jupyter nbconvert --to mypackage.MyEporter notebook.ipynb

47



nbconvert Documentation, Release 5.5.0.dev0

48 Chapter 10. Writing a custom Exporter



CHAPTER

ELEVEN

CUSTOMIZING SYNTAX HIGHLIGHTING

Under the hood, nbconvert uses pygments to highlight code. Both pdf and html exporting support changing the
highlighting style.

11.1 Using Builtin styles

Pygments has a number of builtin styles available. To use them, we just need to set the style setting in the relevant
preprocessor.

To change the html highlighting export with:

jupyter nbconvert --to html notebook.ipynb --CSSHTMLHeaderPreprocessor.style=<name>

To change pdf and latex highlighting export with:

jupyter nbconvert --to pdf notebook.ipynb --LatexPreprocessor.style=<name>

where <name> is the name of the pygments style. Available styles may vary from system to system. You can find all
available styles with:

pygmentize -L styles

from a terminal or

from pygments.styles import get_all_styles
print(list(get_all_styles()))

from python.

You can preview all the styles from an environment that can display html like jupyter notebook with:

from pygments.styles import get_all_styles
from pygments.formatters import Terminal256Formatter
from pygments.lexers import PythonLexer
from pygments import highlight

code = """
import os
def function(test=1):

if test in [3,4]:
print(test)

"""
for style in get_all_styles():

(continues on next page)
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(continued from previous page)

highlighted_code = highlight(code, PythonLexer(),
→˓Terminal256Formatter(style=style))

print(f"{style}:\n{highlighted_code}")

11.2 Making your own styles

To make your own style you must subclass pygments.styles.Style, and then you must register your new style
with Pygments using their pluggin system. This is explained in detail in the Pygments documentation.
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TWELVE

ARCHITECTURE OF NBCONVERT

This is a high-level outline of the basic workflow, structures and objects in nbconvert. Specifically, this exposition has
a two-fold goal:

1. to alert you to the affordances available for customisation or direct contributions

2. to provide a map of where and when different events occur, which should aid in tracking down bugs.

12.1 A detailed pipeline exploration

Nbconvert takes in a notebook, which is a JSON object, and operates on that object.

This can include operations that take a notebook and return a notebook. For example, that operation could be to
execute the notebook as though it were a continuous script; if it were executed --in-place then it would overwrite
the current notebook. Or it could be that we wish to systematically alter the notebook, for example by clearing all
output cells. Format agnostic operations on cell content that do not violate the nbformat spec can be interpreted as a
notebook to notebook conversion step; such operations can be performed as part of the preprocessing step.

But often we want to have the notebook’s structured content in a different format. Importantly, in many cases the
structure of the notebook should be reflected in the structure of the output, adapted to the output’s format. For that
purpose, the original JSON structure of the document is crucial scaffolding needed to support this kind of structured
output. In order to maintain structured, it can be useful to apply our conversion programmatically on the structure
itself. To do so, when converting to formats other than the notebook, we use the jinja templating engine.

The basic unit of structure in a notebook is the cell. Accordingly, since our templating engine is capable of expressing
structure, the basic unit in our templates will often be specified at the cell level. Each cell has a certain type; the
three most important cell types for our purposes are code, markdown, and raw NbConvert. Code cells can be split
further into their input and their output. Operations can also occur separately on input and output and their respective
subcomponents. Markdown cells and raw NbConvert cells do not have analogous substructure.

The template’s structure then can be seen as a mechanism for selecting content on which to operate. Because the
template operates on individual cells, this has some upsides and drawbacks. One upside is that this allows the template
to have access to the individual cell’s metadata, which enables intelligently transforming the appropriate content. The
transformations occur as a series of replacement rules and filters. For many purposes these filters take the form of
external calls to pandoc, which is a utility for converting between many different document formats. One downside is
that this makes operations that require global coördination (e.g., cross referencing across cells) somewhat challenging
to implement as filters inside templates.

Note that all that we’ve described is happening in memory. This is crucial in order to ensure that this functionality is
available when writing files is more challenging. Nonetheless, the reason for using nbconvert almost always involves
producing some kind of output file. We take the in-memory object and write a file appropriate for the output type.

The entirety of heretofore described process can be described as part of an Exporter. Exporters often involves
Preprocessors, filters, templates and Writers. These classes and functions are described in greater
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detail below.

Finally, one can apply a Postprocessor after the writing has occurred. For example, it is common when converting
to slides to start a webserver and open a browser window with the newly created document (--to slides --post
serve).

12.2 Classes

12.2.1 Exporters

The primary class in nbconvert is the Exporter. Exporters encapsulate the operation of turning a notebook into
another format. There is one Exporter for each format supported in nbconvert. The first thing an Exporter does is load
a notebook, usually from a file via nbformat. Most of what a typical Exporter does is select and configure prepro-
cessors, filters, and templates. If you want to convert notebooks to additional formats, a new Exporter is probably what
you are looking for.

See also:

Writing a custom Exporter

Once the notebook is loaded, it is preprocessed. . .

12.2.2 Preprocessors

A Preprocessor is an object that transforms the content of the notebook to be exported. The result of a prepro-
cessor being applied to a notebook is always a notebook. These operations include re-executing the cells, stripping
output, removing bundled outputs to separate files, etc. If you want to add operations that modify a notebook before
exporting, a preprocessor is the place to start.

See also:

Custom Preprocessors

Once a notebook is preprocessed, it’s time to convert the notebook into the destination format.

12.2.3 Templates and Filters

Most Exporters in nbconvert are a subclass of TemplateExporter, which means they use a jinja template to render
a notebook into the destination format. If you want to change how an exported notebook looks in an existing format,
a custom template is the place to start.

A jinja template is composed of blocks that look like this (taken from nbconvert’s default html template):

{% block stream_stdout -%}
<div class="output_subarea output_stream output_stdout output_text">
<pre>
{{- output.text | ansi2html -}}
</pre>
</div>
{%- endblock stream_stdout %}

This block determines how text output on stdout is displayed in HTML. The {{- output.text |
ansi2html -}} bit means “Take the output text and pass it through ansi2html, then include the result here.” In
this example, ansi2html is a filter. Filters are a jinja concept; they are Python callables which take something
(typically text) as an input, and produce a text output. If you want to perform new or more complex transformations
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of particular outputs, a filter may be what you need. Typically, filters are pure functions. However, if you have a filter
that itself requires some configuration, it can be an instance of a callable, configurable class.

See also:

• Customizing nbconvert

• Filters

Once it has passed through the template, an Exporter is done with the notebook, and returns the file data. At this point,
we have the file data as text or bytes and we can decide where it should end up. When you are using nbconvert as a
library, as opposed to the command-line application, this is typically where you would stop, take your exported data,
and go on your way.

12.2.4 Writers

A Writer takes care of writing the resulting file(s) where they should end up. There are two basic Writers in
nbconvert:

1. stdout - writes the result to stdout (for pipe-style workflows)

2. Files (default) - writes the result to the filesystem

Once the output is written, nbconvert has done its job.

12.2.5 Postprocessors

A Postprocessor is something that runs after everything is exported and written to the filesystem. The only
postprocessor in nbconvert at this point is the ServePostProcessor, which is used for serving reveal.js HTML
slideshows.
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CHAPTER

THIRTEEN

PYTHON API FOR WORKING WITH NBCONVERT

Contents:

13.1 NbConvertApp

See also:

Configuration options Configurable options for the nbconvert application

class nbconvert.nbconvertapp.NbConvertApp(**kwargs)
Application used to convert from notebook file type (*.ipynb)

init_notebooks()
Construct the list of notebooks.

If notebooks are passed on the command-line, they override (rather than add) notebooks specified in config
files. Glob each notebook to replace notebook patterns with filenames.

convert_notebooks()
Convert the notebooks in the self.notebook traitlet

convert_single_notebook(notebook_filename, input_buffer=None)
Convert a single notebook.

Performs the following steps:

1. Initialize notebook resources

2. Export the notebook to a particular format

3. Write the exported notebook to file

4. (Maybe) postprocess the written file

Parameters

• notebook_filename (str) –

• input_buffer – If input_buffer is not None, conversion is done and the buffer is used
as source into a file basenamed by the notebook_filename argument.

init_single_notebook_resources(notebook_filename)
Step 1: Initialize resources

This initializes the resources dictionary for a single notebook.

Returns
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resources dictionary for a single notebook that MUST include the following keys:

• config_dir: the location of the Jupyter config directory

• unique_key: the notebook name

• output_files_dir: a directory where output files (not including the notebook itself)
should be saved

Return type dict

export_single_notebook(notebook_filename, resources, input_buffer=None)
Step 2: Export the notebook

Exports the notebook to a particular format according to the specified exporter. This function returns the
output and (possibly modified) resources from the exporter.

Parameters

• notebook_filename (str) – name of notebook file.

• resources (dict) –

• input_buffer – readable file-like object returning unicode. if not None, note-
book_filename is ignored

Returns

• output

• dict – resources (possibly modified)

write_single_notebook(output, resources)
Step 3: Write the notebook to file

This writes output from the exporter to file using the specified writer. It returns the results from the writer.

Parameters

• output –

• resources (dict) – resources for a single notebook including name, config directory
and directory to save output

Returns results from the specified writer output of exporter

Return type file

postprocess_single_notebook(write_results)
Step 4: Post-process the written file

Only used if a postprocessor has been specified. After the converted notebook is written to a file in Step 3,
this post-processes the notebook.

13.2 Exporters

See also:

Configuration options Configurable options for the nbconvert application

nbconvert.exporters.export(exporter, nb, **kw)
Export a notebook object using specific exporter class.

Parameters

56 Chapter 13. Python API for working with nbconvert

https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict


nbconvert Documentation, Release 5.5.0.dev0

• exporter (Exporter class or instance) – Class or instance of the exporter that should
be used. If the method initializes its own instance of the class, it is ASSUMED that the
class type provided exposes a constructor (__init__) with the same signature as the base
Exporter class.

• nb (NotebookNode) – The notebook to export.

• config (config (optional, keyword arg)) – User configuration instance.

• resources (dict (optional, keyword arg)) – Resources used in the conver-
sion process.

Returns

output [str] The resulting converted notebook.

resources [dictionary] Dictionary of resources used prior to and during the conversion process.

Return type tuple

nbconvert.exporters.get_exporter(name)
Given an exporter name or import path, return a class ready to be instantiated

Raises ValueError if exporter is not found

nbconvert.exporters.get_export_names()
Return a list of the currently supported export targets

Exporters can be found in external packages by registering them as an nbconvert.exporter entrypoint.

13.2.1 Exporter base classes

class nbconvert.exporters.Exporter(config=None, **kw)
Class containing methods that sequentially run a list of preprocessors on a NotebookNode object and then return
the modified NotebookNode object and accompanying resources dict.

__init__(config=None, **kw)
Public constructor

Parameters

• config (Config) – User configuration instance.

• **kw – Additional keyword arguments passed to parent __init__

from_notebook_node(nb, resources=None, **kw)
Convert a notebook from a notebook node instance.

Parameters

• nb (NotebookNode) – Notebook node (dict-like with attr-access)

• resources (dict) – Additional resources that can be accessed read/write by prepro-
cessors and filters.

• **kw – Ignored

from_filename(filename, resources=None, **kw)
Convert a notebook from a notebook file.

Parameters

• filename (str) – Full filename of the notebook file to open and convert.

13.2. Exporters 57

https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str


nbconvert Documentation, Release 5.5.0.dev0

• resources (dict) – Additional resources that can be accessed read/write by prepro-
cessors and filters.

• **kw – Ignored

from_file(file_stream, resources=None, **kw)
Convert a notebook from a notebook file.

Parameters

• file_stream (file-like object) – Notebook file-like object to convert.

• resources (dict) – Additional resources that can be accessed read/write by prepro-
cessors and filters.

• **kw – Ignored

register_preprocessor(preprocessor, enabled=False)
Register a preprocessor. Preprocessors are classes that act upon the notebook before it is passed into
the Jinja templating engine. preprocessors are also capable of passing additional information to the Jinja
templating engine.

Parameters

• preprocessor (Preprocessor) – A dotted module name, a type, or an instance

• enabled (bool) – Mark the preprocessor as enabled

class nbconvert.exporters.TemplateExporter(config=None, **kw)
Exports notebooks into other file formats. Uses Jinja 2 templating engine to output new formats. Inherit from
this class if you are creating a new template type along with new filters/preprocessors. If the filters/ preprocessors
provided by default suffice, there is no need to inherit from this class. Instead, override the template_file and
file_extension traits via a config file.

Filters available by default for templates:

• add_anchor

• add_prompts

• ansi2html

• ansi2latex

• ascii_only

• citation2latex

• comment_lines

• convert_pandoc

• escape_latex

• filter_data_type

• get_lines

• get_metadata

• highlight2html

• highlight2latex

• html2text

• indent
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• ipython2python

• json_dumps

• markdown2asciidoc

• markdown2html

• markdown2latex

• markdown2rst

• path2url

• posix_path

• prevent_list_blocks

• strip_ansi

• strip_dollars

• strip_files_prefix

• wrap_text

__init__(config=None, **kw)
Public constructor

Parameters

• config (config) – User configuration instance.

• extra_loaders (list[of Jinja Loaders]) – ordered list of Jinja loader to find
templates. Will be tried in order before the default FileSystem ones.

• template (str (optional, kw arg)) – Template to use when exporting.

from_notebook_node(nb, resources=None, **kw)
Convert a notebook from a notebook node instance.

Parameters

• nb (NotebookNode) – Notebook node

• resources (dict) – Additional resources that can be accessed read/write by prepro-
cessors and filters.

from_filename(filename, resources=None, **kw)
Convert a notebook from a notebook file.

Parameters

• filename (str) – Full filename of the notebook file to open and convert.

• resources (dict) – Additional resources that can be accessed read/write by prepro-
cessors and filters.

• **kw – Ignored

from_file(file_stream, resources=None, **kw)
Convert a notebook from a notebook file.

Parameters

• file_stream (file-like object) – Notebook file-like object to convert.

• resources (dict) – Additional resources that can be accessed read/write by prepro-
cessors and filters.
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• **kw – Ignored

register_preprocessor(preprocessor, enabled=False)
Register a preprocessor. Preprocessors are classes that act upon the notebook before it is passed into
the Jinja templating engine. preprocessors are also capable of passing additional information to the Jinja
templating engine.

Parameters

• preprocessor (Preprocessor) – A dotted module name, a type, or an instance

• enabled (bool) – Mark the preprocessor as enabled

register_filter(name, jinja_filter)
Register a filter. A filter is a function that accepts and acts on one string. The filters are accessible within
the Jinja templating engine.

Parameters

• name (str) – name to give the filter in the Jinja engine

• filter (filter) –

13.2.2 Specialized exporter classes

The NotebookExporter inherits directly from Exporter, while the other exporters listed here inherit either
directly or indirectly from TemplateExporter.

class nbconvert.exporters.NotebookExporter(config=None, **kw)
Exports to an IPython notebook.

This is useful when you want to use nbconvert’s preprocessors to operate on a notebook (e.g. to execute it) and
then write it back to a notebook file.

class nbconvert.exporters.HTMLExporter(config=None, **kw)
Exports a basic HTML document. This exporter assists with the export of HTML. Inherit from it if you are writ-
ing your own HTML template and need custom preprocessors/filters. If you don’t need custom preprocessors/
filters, just change the ‘template_file’ config option.

class nbconvert.exporters.SlidesExporter(config=None, **kw)
Exports HTML slides with reveal.js

class nbconvert.exporters.LatexExporter(config=None, **kw)
Exports to a Latex template. Inherit from this class if your template is LaTeX based and you need custom tran-
formers/filters. Inherit from it if you are writing your own HTML template and need custom tranformers/filters.
If you don’t need custom tranformers/filters, just change the ‘template_file’ config option. Place your template
in the special “/latex” subfolder of the “../templates” folder.

class nbconvert.exporters.MarkdownExporter(config=None, **kw)
Exports to a markdown document (.md)

class nbconvert.exporters.PDFExporter(config=None, **kw)
Writer designed to write to PDF files.

This inherits from LatexExporter. It creates a LaTeX file in a temporary directory using the template
machinery, and then runs LaTeX to create a pdf.

class nbconvert.exporters.PythonExporter(config=None, **kw)
Exports a Python code file.

class nbconvert.exporters.RSTExporter(config=None, **kw)
Exports reStructuredText documents.
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13.3 Preprocessors

See also:

Configuration options Configurable options for the nbconvert application

class nbconvert.preprocessors.Preprocessor(**kw)
A configurable preprocessor

Inherit from this class if you wish to have configurability for your preprocessor.

Any configurable traitlets this class exposed will be configurable in profiles using c.SubClassName.attribute =
value

you can overwrite preprocess_cell() to apply a transformation independently on each cell or
preprocess() if you prefer your own logic. See corresponding docstring for information.

Disabled by default and can be enabled via the config by ‘c.YourPreprocessorName.enabled = True’

__init__(**kw)
Public constructor

Parameters

• config (Config) – Configuration file structure

• **kw – Additional keyword arguments passed to parent

preprocess(nb, resources)
Preprocessing to apply on each notebook.

Must return modified nb, resources.

If you wish to apply your preprocessing to each cell, you might want to override preprocess_cell method
instead.

Parameters

• nb (NotebookNode) – Notebook being converted

• resources (dictionary) – Additional resources used in the conversion process. Al-
lows preprocessors to pass variables into the Jinja engine.

preprocess_cell(cell, resources, index)
Override if you want to apply some preprocessing to each cell. Must return modified cell and resource
dictionary.

Parameters

• cell (NotebookNode cell) – Notebook cell being processed

• resources (dictionary) – Additional resources used in the conversion process. Al-
lows preprocessors to pass variables into the Jinja engine.

• index (int) – Index of the cell being processed

13.3.1 Specialized preprocessors

class nbconvert.preprocessors.ConvertFiguresPreprocessor(**kw)
Converts all of the outputs in a notebook from one format to another.

class nbconvert.preprocessors.SVG2PDFPreprocessor(**kw)
Converts all of the outputs in a notebook from SVG to PDF.
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class nbconvert.preprocessors.ExtractOutputPreprocessor(**kw)
Extracts all of the outputs from the notebook file. The extracted outputs are returned in the ‘resources’ dictionary.

class nbconvert.preprocessors.LatexPreprocessor(**kw)
Preprocessor for latex destined documents.

Mainly populates the latex key in the resources dict, adding definitions for pygments highlight styles.

class nbconvert.preprocessors.CSSHTMLHeaderPreprocessor(*pargs, **kwargs)
Preprocessor used to pre-process notebook for HTML output. Adds IPython notebook front-end CSS and Pyg-
ments CSS to HTML output.

class nbconvert.preprocessors.HighlightMagicsPreprocessor(config=None, **kw)
Detects and tags code cells that use a different languages than Python.

class nbconvert.preprocessors.ClearOutputPreprocessor(**kw)
Removes the output from all code cells in a notebook.

class nbconvert.preprocessors.RegexRemovePreprocessor(**kw)
Removes cells from a notebook that match one or more regular expression.

For each cell, the preprocessor checks whether its contents match the regular expressions in the patterns traitlet
which is a list of unicode strings. If the contents match any of the patterns, the cell is removed from the notebook.

To modify the list of matched patterns, modify the patterns traitlet. For example, execute the following command
to convert a notebook to html and remove cells containing only whitespace:

jupyter nbconvert --RegexRemovePreprocessor.patterns="['\s*\Z']" mynotebook.ipynb

The command line argument sets the list of patterns to '\s*\Z' which matches an arbitrary number of whites-
pace characters followed by the end of the string.

See https://regex101.com/ for an interactive guide to regular expressions (make sure to select the python flavor).
See https://docs.python.org/library/re.html for the official regular expression documentation in python.

class nbconvert.preprocessors.ExecutePreprocessor(**kw)
Executes all the cells in a notebook

preprocess(nb, resources, km=None)
Preprocess notebook executing each code cell.

The input argument nb is modified in-place.

Parameters

• nb (NotebookNode) – Notebook being executed.

• resources (dictionary) – Additional resources used in the conversion process.
For example, passing {'metadata': {'path': run_path}} sets the execu-
tion path to run_path.

• km (KernelManager (optional)) – Optional kernel manager. If none is provided,
a kernel manager will be created.

Returns

• nb (NotebookNode) – The executed notebook.

• resources (dictionary) – Additional resources used in the conversion process.

preprocess_cell(cell, resources, cell_index)
Executes a single code cell. See base.py for details.

To execute all cells see preprocess().
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process_message(msg, cell, cell_index)
Processes a kernel message, updates cell state, and returns the resulting output object that was appended
to cell.outputs.

The input argument cell is modified in-place.

Parameters

• msg (dict) – The kernel message being processed.

• cell (nbformat.NotebookNode) – The cell which is currently being processed.

• cell_index (int) – The position of the cell within the notebook object.

Returns output – The execution output payload (or None for no output).

Return type dict

Raises CellExecutionComplete – Once a message arrives which indicates computation
completeness.

setup_preprocessor(nb, resources, km=None)
Context manager for setting up the class to execute a notebook.

The assigns nb to self.nb where it will be modified in-place. It also creates and assigns the Kernel Manager
(self.km) and Kernel Client(self.kc).

It is intended to yield to a block that will execute codeself.

When control returns from the yield it stops the client’s zmq channels, shuts down the kernel, and removes
the now unused attributes.

Parameters

• nb (NotebookNode) – Notebook being executed.

• resources (dictionary) – Additional resources used in the conversion process.
For example, passing {'metadata': {'path': run_path}} sets the execu-
tion path to run_path.

• km (KernerlManager (optional)) – Optional kernel manaher. If none is pro-
vided, a kernel manager will be created.

Returns

• nb (NotebookNode) – The executed notebook.

• resources (dictionary) – Additional resources used in the conversion process.

start_new_kernel(**kwargs)
Creates a new kernel manager and kernel client.

Parameters kwargs – Any options for self.kernel_manager_class.start_kernel(). Because
that defaults to KernelManager, this will likely include options accepted by KernelMan-
ager.start_kernel()‘, which includes cwd.

Returns

• km (KernelManager) – A kernel manager as created by self.kernel_manager_class.

• kc (KernelClient) – Kernel client as created by the kernel manager km.

nbconvert.preprocessors.coalesce_streams(cell, resources, index)
Merge consecutive sequences of stream output into single stream to prevent extra newlines inserted at flush calls

Parameters
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• cell (NotebookNode cell) – Notebook cell being processed

• resources (dictionary) – Additional resources used in the conversion process. Al-
lows transformers to pass variables into the Jinja engine.

• index (int) – Index of the cell being processed

13.4 Filters

Filters are for use with the TemplateExporter exporter. They provide a way for you transform notebook contents
to a particular format depending on the template you are using. For example, when converting to HTML, you would
want to use the ansi2html() function to convert ANSI colors (from e.g. a terminal traceback) to HTML colors.

See also:

Exporters API documentation for the various exporter classes

nbconvert.filters.add_anchor(html, anchor_link_text=’¶’)
Add an id and an anchor-link to an html header

For use on markdown headings

nbconvert.filters.add_prompts(code, first=’>>> ’, cont=’... ’)
Add prompts to code snippets

nbconvert.filters.ansi2html(text)
Convert ANSI colors to HTML colors.

Parameters text (unicode) – Text containing ANSI colors to convert to HTML

nbconvert.filters.ansi2latex(text)
Convert ANSI colors to LaTeX colors.

Parameters text (unicode) – Text containing ANSI colors to convert to LaTeX

nbconvert.filters.ascii_only(s)
ensure a string is ascii

nbconvert.filters.citation2latex(s)
Parse citations in Markdown cells.

This looks for HTML tags having a data attribute names data-cite and replaces it by the call to LaTeX cite
command. The tranformation looks like this:

<cite data-cite=”granger”>(Granger, 2013)</cite>

Becomes

cite{granger}

Any HTML tag can be used, which allows the citations to be formatted in HTML in any manner.

nbconvert.filters.comment_lines(text, prefix=’# ’)
Build a Python comment line from input text.

Parameters

• text (str) – Text to comment out.

• prefix (str) – Character to append to the start of each line.

nbconvert.filters.escape_latex(text)
Escape characters that may conflict with latex.
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Parameters text (str) – Text containing characters that may conflict with Latex

class nbconvert.filters.DataTypeFilter(**kw)
Returns the preferred display format

nbconvert.filters.get_lines(text, start=None, end=None)
Split the input text into separate lines and then return the lines that the caller is interested in.

Parameters

• text (str) – Text to parse lines from.

• start (int, optional) – First line to grab from.

• end (int, optional) – Last line to grab from.

nbconvert.filters.convert_pandoc(source, from_format, to_format, extra_args=None)
Convert between any two formats using pandoc.

This function will raise an error if pandoc is not installed. Any error messages generated by pandoc are printed
to stderr.

Parameters

• source (string) – Input string, assumed to be valid in from_format.

• from_format (string) – Pandoc format of source.

• to_format (string) – Pandoc format for output.

Returns out – Output as returned by pandoc.

Return type string

class nbconvert.filters.Highlight2HTML(pygments_lexer=None, **kwargs)

class nbconvert.filters.Highlight2Latex(pygments_lexer=None, **kwargs)

nbconvert.filters.html2text(element)
extract inner text from html

Analog of jQuery’s $(element).text()

nbconvert.filters.indent(instr, nspaces=4, ntabs=0, flatten=False)
Indent a string a given number of spaces or tabstops.

indent(str,nspaces=4,ntabs=0) -> indent str by ntabs+nspaces.

Parameters

• instr (basestring) – The string to be indented.

• nspaces (int (default: 4)) – The number of spaces to be indented.

• ntabs (int (default: 0)) – The number of tabs to be indented.

• flatten (bool (default: False)) – Whether to scrub existing indentation. If
True, all lines will be aligned to the same indentation. If False, existing indentation will be
strictly increased.

Returns str|unicode

Return type string indented by ntabs and nspaces.

nbconvert.filters.ipython2python(code)
Transform IPython syntax to pure Python syntax

Parameters code (str) – IPython code, to be transformed to pure Python
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nbconvert.filters.markdown2html(source)
Convert a markdown string to HTML using mistune

nbconvert.filters.markdown2latex(source, markup=’markdown’, extra_args=None)
Convert a markdown string to LaTeX via pandoc.

This function will raise an error if pandoc is not installed. Any error messages generated by pandoc are printed
to stderr.

Parameters

• source (string) – Input string, assumed to be valid markdown.

• markup (string) – Markup used by pandoc’s reader default : pandoc extended mark-
down (see http://pandoc.org/README.html#pandocs-markdown)

Returns out – Output as returned by pandoc.

Return type string

nbconvert.filters.markdown2rst(source, extra_args=None)
Convert a markdown string to ReST via pandoc.

This function will raise an error if pandoc is not installed. Any error messages generated by pandoc are printed
to stderr.

Parameters source (string) – Input string, assumed to be valid markdown.

Returns out – Output as returned by pandoc.

Return type string

nbconvert.filters.path2url(path)
Turn a file path into a URL

nbconvert.filters.posix_path(path)
Turn a path into posix-style path/to/etc

Mainly for use in latex on Windows, where native Windows paths are not allowed.

nbconvert.filters.prevent_list_blocks(s)
Prevent presence of enumerate or itemize blocks in latex headings cells

nbconvert.filters.strip_ansi(source)
Remove ANSI escape codes from text.

Parameters source (str) – Source to remove the ANSI from

nbconvert.filters.strip_dollars(text)
Remove all dollar symbols from text

Parameters text (str) – Text to remove dollars from

nbconvert.filters.strip_files_prefix(text)
Fix all fake URLs that start with files/, stripping out the files/ prefix. Applies to both urls (for html) and relative
paths (for markdown paths).

Parameters text (str) – Text in which to replace ‘src=”files/real. . . ’ with ‘src=”real. . . ’

nbconvert.filters.wrap_text(text, width=100)
Intelligently wrap text. Wrap text without breaking words if possible.

Parameters

• text (str) – Text to wrap.

• width (int, optional) – Number of characters to wrap to, default 100.
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13.5 Writers

See also:

Configuration options Configurable options for the nbconvert application

class nbconvert.writers.WriterBase(config=None, **kw)
Consumes output from nbconvert export. . . () methods and writes to a useful location.

__init__(config=None, **kw)
Constructor

write(output, resources, **kw)
Consume and write Jinja output.

Parameters

• output (string) – Conversion results. This string contains the file contents of the
converted file.

• resources (dict) – Resources created and filled by the nbconvert conversion process.
Includes output from preprocessors, such as the extract figure preprocessor.

13.5.1 Specialized writers

class nbconvert.writers.DebugWriter(config=None, **kw)
Consumes output from nbconvert export. . . () methods and writes useful debugging information to the stdout.
The information includes a list of resources that were extracted from the notebook(s) during export.

class nbconvert.writers.FilesWriter(**kw)
Consumes nbconvert output and produces files.

class nbconvert.writers.StdoutWriter(config=None, **kw)
Consumes output from nbconvert export. . . () methods and writes to the stdout stream.

13.6 Postprocessors

See also:

Configuration options Configurable options for the nbconvert application

class nbconvert.postprocessors.PostProcessorBase(**kw)

postprocess(input)
Post-process output from a writer.

13.6.1 Specialized postprocessors

class nbconvert.postprocessors.ServePostProcessor(**kw)
Post processor designed to serve files

Proxies reveal.js requests to a CDN if no local reveal.js is present

postprocess(input)
Serve the build directory with a webserver.
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CHAPTER

FOURTEEN

MAKING AN NBCONVERT RELEASE

This document guides a contributor through creating a release of nbconvert.

14.1 Assign all merged PRs to milestones

Go to GitHub and assign all PRs that have been merged to milestones. This will be helpful when you update the
changelog. If you go to this GitHub page you will find all the PRs that currently have no milestones.

14.2 Gather all PRs related to milestone

ghpro can be used to extract the pull requests by call the following from nbconvert directory (will ask for an API token
the first time):

github-stats --milestone=$VERSION --since-tag $LAST_VERSION --links

14.3 Manually categorize tickets

Group the tickets by these general categories (or others if they are relevant). This usually a manual processes to
evaluate the changes in each PR.

1. New Features

2. Deprecations

3. Fixing Problems

4. Testing, Docs, and Builds

14.4 Collect major changes

From the tickets write up any major features / changes that deserve a paragraph to describe how they work.

14.5 Update docs/source/changelog.rst

Copy these changes with the new version to the top of changelog.rst. Prior release changelogs can be used to pick
formatting of the message.
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14.6 Check installed tools

Review CONTRIBUTING.md, particularly the testing and release sections.

14.7 Clean the repository

You can remove all non-tracked files with:

git clean -xfdi

This would ask you for confirmation before removing all untracked files.

Make sure the dist/ folder is clean and avoid stale builds from previous attempts.

14.8 Create the release

1. Update the changelog to account for all the PRs assigned to this milestone.

2. Update version number in notebook/_version.py and remove .dev from dev_info.

3. Commit and tag the release with the current version number:

git commit -am "release $VERSION"
git tag $VERSION

4. You are now ready to build the sdist and wheel:

python setup.py sdist
python setup.py bdist_wheel

5. You can now test the wheel and the sdist locally before uploading to PyPI. Make sure to use twine to upload
the archives over SSL.

twine upload dist/*

6. The conda-forge bot will automatically add a PR on your behalf to the nbconvert-feedstock repo. You may want
to review this PR to ensure conda-forge will be updated cleanly.

14.9 Release the new version

Push directly on master, including –tags separately

git push upstream
git push upstream --tags

14.10 Return to development state

If all went well, change the notebook/_version.py back adding the .dev suffix.
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14.11 Email googlegroup with update letter

Make sure to email jupyter@googlegroups.com with the subject line of “[ANN] NBConvert $VERSION – . . . ” and
include at least the significant changes, contributors, and individual PR notes (if not many significant changes).
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CHAPTER

FIFTEEN

CHANGES IN NBCONVERT

15.1 5.5

The following 18 authors contributed 144 commits – Thank you all!

• Benjamin Ragan-Kelley

• Clayton A Davis

• DInne Bosman

• Doug Blank

• Henrique Silva

• Jeff Hale

• Lukasz Mitusinski

• M Pacer

• Maarten Breddels

• Madhumitha N

• Matthew Seal

• Paul Gowder

• Philipp A

• Rick Lupton

• Rüdiger Busche

• Thomas Kluyver

• Tyler Makaro

• WrRan

The full list of changes they made can be seen on GitHub

15.1.1 Significant Changes

Deprecations

Python 3.4 support was dropped. Many of our upstream libraries stopped supporting 3.4 and it was found that serious
bugs were being caught during testing against those libraries updating past 3.4.
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See PR #979 for details.

IPyWidget Support

Now when a notebook executing contains Jupyter Widgets, the state of all the widgets can be stored in the notebook’s
metadata. This allows rendering of the live widgets on, for instance nbviewer, or when converting to html.

You can tell nbconvert to not store the state using the store_widget_state argument:

jupyter nbconvert --ExecutePreprocessor.store_widget_state=False --to notebook --
→˓execute mynotebook.ipynb

This widget rendering is not performed against a browser during execution, so only widget default states or states ma-
nipulated via user code will be calculated during execution. %%javascript cells will execute upon notebook rendering,
enabling complex interactions to function as expected when viewed by a UI.

If you can’t view widget results after execution, you may need to select Trust Notebook under the File menu of the UI
in question.

See PR #779, PR #900, and PR #983 for details.

Execute Preprocessor Rework

Based on monkey patching required in papermill the run_cell code path in the ExecutePreprocessor was reworked
to allow for accessing individual message parses without reimplementing the entire function. Now there is a pro-
cesss_message function which take a ZeroMQ message and applies all of its side-effect updates on the cell/notebook
objects before returning the output it generated, if it generated any such output.

The change required a much more extensive test suite covering cell execution as test coverage on the various, some-
times wonky, code paths made improvements and reworks impossible to prove undamaging. Now changes to kernel
message processing has much better coverage, so future additions or changes with specs over time will be easier to
add.

See PR #905 and PR #982 for details

Out Of Memory Kernel Failure Catches

When running out of memory on a machine, if the kernel process was killed by the operating system it would result
in a timeout error at best and hang indefinitely at worst. Now regardless of timeout configuration, if the underlying
kernel process dies before emitting any messages to the effect an exception will be raised notifying the consumer of
the lost kernel within a few seconds.

See PR #959, PR #971, and PR #998 for details

Latex / PDF Template Improvements

The latex template was long overdue for improvements. The default template had a rewrite which makes exports for
latex and pdf look a lot better. Code cells in particular render much better with line breaks and styling the more closely
matches notebook browser rendering. Thanks t-makaro for the efforts here!

See PR #992 for details
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15.1.2 Comprehensive notes

New Features

• IPyWidget Support PR #779, PR #900, and PR #983

• A new ClearMetadata Preprocessor is available PR #805:

• Support for pandoc 2 PR #964:

• New, and better, latex template PR #992:

Fixing Problems

• Refactored execute preprocessor to have a process_message function PR #905:

• Fixed OOM kernel failures hanging PR #959 and PR #971:

• Fixed latex export for svg data in python 3 PR #985:

• Enabled configuration to be shared to exporters from script exporter PR #993:

• Make latex errors less verbose PR #988:

• Typo in template syntax PR #984:

• Improved attachments +fix supporting non-unique names PR #980:

• PDFExporter “output_mimetype” traitlet is not longer ‘text/latex’ PR #972:

• FIX: respect wait for clear_output PR #969:

• address deprecation warning in cgi.escape PR #963:

• Correct inaccurate description of available LaTeX template PR #958:

• Fixed kernel death detection for executions with timeouts PR #998:

• Fixed export names for various templates PR #1000, PR #1001, and PR #1001:

Deprecations

• Dropped support for python 3.4 PR #979:

• Removed deprecated export_by_name PR #945:

Testing, Docs, and Builds

• Added tests for each branch in execute’s run_cell method PR #982:

• Mention formats in –to options more clearly PR #991:

• Adds ascii output type to command line docs page, mention image folder output PR #956:

• Simplify setup.py PR #949:

• Use utf-8 encoding in execute_api example PR #921:

• Upgrade pytest on Travis PR #941:

• Fix LaTeX base template name in docs PR #940:

• Updated release instructions based on 5.4 release walk-through PR #887:
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• Fixed broken link to jinja docs PR #997:

15.2 5.4.1

5.4.1 on Github

Thanks to the following 11 authors who contributed 57 commits.

• Benjamin Ragan-Kelley

• Carol Willing

• Clayton A Davis

• Daniel Rodriguez

• M Pacer

• Matthew Seal

• Matthias Geier

• Matthieu Parizy

• Rüdiger Busche

• Thomas Kluyver

• Tyler Makaro

15.2.1 Comprehensive notes

New Features

• Expose pygments styles PR #889:

• Tornado 6.0 support – Convert proxy handler from callback to coroutine PR #937:

• Add option to overwrite the highlight_code filter PR #877:

Fixing Problems

• Mathjax.tpl fix for rendering Latex in html PR #932:

• Backwards compatbility for empty kernel names PR #927 PR #924

Testing, Docs, and Builds

• DOC: Add missing language specification to code-block PR #882:

15.3 5.4

5.4 on Github
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15.3.1 Significant Changes

Deprecations

Python 3.3 support was dropped. The version of python is no longer common and new versions have many fixes and
interface improvements that warrant the change in support.

See PR #843 for implementation details.

Changes in how we handle metadata

There were a few new metadata fields which are now respected in nbconvert.

nb.metadata.authors metadata attribute will be respected in latex exports. Multiple authors will be added with
, separation against their names.

nb.metadata.title will be respected ahead of nb.metadata.name for title assignment. This better matches
with the notebook format.

nb.metadata.filename will override the default output_filename_template when extracting notebook
resources in the ExtractOutputPreprocessor. The attribute is helpful for when you want to consistently fix
to a particular output filename, especially when you need to set image filenames for your exports.

The raises-exception cell tag (nb.cells[].metadata.tags[raises-exception]) allows for cell
exceptions to not halt execution. The tag is respected in the same way by nbval and other notebook inter-
faces. nb.metadata.allow_errors will apply this rule for all cells. This feature is toggleable with
the force_raise_errors configuration option. Errors from executing the notebook can be allowed with a
raises-exception tag on a single cell, or the allow_errors configurable option for all cells. An allowed
error will be recorded in notebook output, and execution will continue. If an error occurs when it is not explicitly al-
lowed, a CellExecutionError will be raised. If force_raise_errors is True, CellExecutionError
will be raised for any error that occurs while executing the notebook. This overrides both the allow_errors option
and the raises-exception cell tags.

See PR #867, PR #703, PR #685, PR #672, and PR #684 for implementation changes.

Configurable kernel managers when executing notebooks

The kernel manager can now be optionally passed into the ExecutePreprocessor.preprocess and the
executenb functions as the keyword argument km. This means that the kernel can be configured as desired be-
fore beginning preprocessing.

This is useful for executing in a context where the kernel has external dependencies that need to be set to non-default
values. An example of this might be a Spark kernel where you wish to configure the Spark cluster location ahead of
time without building a new kernel.

Overall the ExecutePreprocessor has been reworked to make it easier to use. Future releases will continue this trend
to make this section of the code more inheritable and reusable by others. We encourage you read the source code for
this version if you’re interested in the detailed improvements.

See PR #852 for implementation changes.

Surfacing exporters in front-ends

Exporters are now exposed for front-ends to consume, including classic notebook. As an example, this means that
latex exporter will be made available for latex ‘text/latex’ media type from the Download As interface.

See PR #759 and PR #864 for implementation changes.
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Raw Templates

Template exporters can now be assigned raw templates as string attributes by setting the raw_template variable.

class AttrExporter(TemplateExporter):
# If the class has a special template and you want it defined within the class
raw_template = """{%- extends 'rst.tpl' -%}

{%- block in_prompt -%}
raw template
{%- endblock in_prompt -%}

"""
exporter_attr = AttrExporter()
output_attr, _ = exporter_attr.from_notebook_node(nb)
assert "raw template" in output_attr

See PR #675 for implementation changes.

New command line flags

The --no-input will hide input cells on export. This is great for notebooks which generate “reports” where you
want the code that was executed to not appear by default in the extracts.

An alias for notebook was added to exporter commands. Now --to ipynb will behave as --to notebook
does.

See PR #825 and PR #873 for implementation changes.

15.3.2 Comprehensive notes

New Features

• No input flag (--no-input) PR #825

• Add alias --to ipynb for notebook exporter PR #873

• Add export_from_notebook PR #864

• If set, use nb.metadata.authors for LaTeX author line PR #867

• Populate language_info metadata when executing PR #860

• Support for \mathscr PR #830

• Allow the execute preprocessor to make use of an existing kernel PR #852

• Refactor ExecutePreprocessor PR #816

• Update widgets CDN for ipywidgets 7 w/fallback PR #792

• Add support for adding custom exporters to the “Download as” menu. PR #759

• Enable ANSI underline and inverse PR #696

• Update notebook css to 5.4.0 PR #748

• Change default for slides to direct to the reveal cdn rather than locally PR #732

• Use “title” instead of “name” for metadata to match the notebook format PR #703

• Img filename metadata PR #685

• Added MathJax compatibility definitions PR #687
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• Per cell exception PR #684

• Simple API for in-memory templates PR #674 PR #675

• Set BIBINPUTS and BSTINPUTS environment variables when making PDF PR #676

• If nb.metadata.title is set, default to that for notebook PR #672

Deprecations

• Drop support for python 3.3 PR #843

Fixing Problems

• Fix api break PR #872

• Don’t remove empty cells by default PR #784

• Handle attached images in html converter PR #780

• No need to check for the channels already running PR #862

• Update font-awesome version for slides PR #793

• Properly treat JSON data PR #847

• Skip executing empty code cells PR #739

• Ppdate log.warn (deprecated) to log.warning PR #804

• Cleanup notebook.tex during PDF generation PR #768

• Windows unicode error fixed, nosetest added to setup.py PR #757

• Better content hiding; template & testing improvements PR #734

• Fix Jinja syntax in custom template example. PR #738

• Fix for an issue with empty math block PR #729

• Add parser for Multiline math for LaTeX blocks PR #716 PR #717

• Use defusedxml to parse potentially untrusted XML PR #708

• Fixes for traitlets 4.1 deprecation warnings PR #695

Testing, Docs, and Builds

• A couple of typos PR #870

• Add python_requires metadata. PR #871

• Document --inplace command line flag. PR #839

• Fix minor typo in usage.rst PR #863

• Add note about local reveal_url_prefix PR #844

• Move onlyif_cmds_exist decorator to test-specific utils PR #854

• Include LICENSE file in wheels PR #827

• Added Ubuntu Linux Instructions PR #724

• Check for too recent of pandoc version PR #814 PR #872
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• Removing more nose remnants via dependencies. PR #758

• Remove offline statement and add some clarifications in slides docs PR #743

• Linkify PR number PR #710

• Added shebang for python PR #694

• Upgrade mistune dependency PR #705

• add feature to improve docs by having links to prs PR #662

• Update notebook CSS from version 4.3.0 to 5.1.0 PR #682

• Explicitly exclude or include all files in Manifest. PR #670

15.4 5.3.1

5.3.1 on Github

• MANIFEST.in updated to include LICENSE and scripts/ when creating sdist. PR #666

15.5 5.3

5.3 on Github

15.5.1 Major features

Tag Based Element Filtering

For removing individual elements from notebooks, we need a way to signal to nbconvert that the elements should be
removed. With this release, we introduce the use of tags for that purpose.

Tags are user-defined strings attached to cells or outputs. They are stored in cell or output metadata. For more on tags
see the nbformat docs on cell metadata.

Usage:

1. Apply tags to the elements that you want to remove.

For removing an entire cell, the cell input, or all cell outputs apply the tag to the cell.

For removing individual outputs, put the tag in the output metadata using a call like
display(your_output_element, metadata={tags=[<your_tags_here>]}).

NB: Use different tags depending on whether you want to remove the entire cell, the input, all outputs, or individual
outputs.

2. Add the tags for removing the different kinds of elements to the following traitlets. Which kind of element you
want to remove determines which traitlet you add the tags to.

The following traitlets remove elements of different kinds:

• remove_cell_tags: removes cells

• remove_input_tags: removes inputs

• remove_all_outputs_tag: removes all outputs

• remove_single_output_tag: removes individual outputs
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15.5.2 Comprehensive notes

• new: configurable browser in ServePostProcessor PR #618

• new: --clear-output command line flag to clear output in-place PR #619

• new: remove elements based on tags with TagRemovePreprocessor. PR #640, PR #643

• new: CellExecutionError can now be imported from nbconvert.preprocessors PR #656

• new: slides now can enable scrolling and custom transitions PR #600

• docs: Release instructions for nbviewer-deploy

• docs: improved instructions for handling errors using the ExecutePreprocessor PR #656

• tests: better height/width metadata testing for images in rst & html PR #601 PR #602

• tests: normalise base64 output data to avoid false positives PR #650

• tests: normalise ipython traceback messages to handle old and new style PR #631

• bug: mathjax obeys \\(\\) & \\[\\] (both nbconvert & pandoc) PR #609 PR #617

• bug: specify default templates using extensions PR #639

• bug: fix pandoc version number PR #638

• bug: require recent mistune version PR #630

• bug: catch errors from IPython execute_reply and error messages PR #642

• nose completely removed & dependency dropped PR #595 PR #660

• mathjax processing in mistune now only uses inline grammar PR #611

• removeRegex now enabled by default on all TemplateExporters, does not remove cells with outputs PR #616

• validate notebook after applying each preprocessor (allowing additional attributes) PR #645

• changed COPYING.md to LICENSE for more standard licensing that GitHub knows how to read PR #654

15.6 5.2.1

5.2 on GitHub

15.6.1 Major features

In this release (along with the usual bugfixes and documentation improvements, which are legion) we have a few new
major features that have been requested for a long time:

Global Content Filtering

You now have the ability to remove input or output from code cells, markdown cells and the input and output prompts.
The easiest way to access all of these is by using traitlets like TemplateExporter.exclude_input = True (or, for example
HTMLExporter.exclude_markdown = True if you wanted to make it specific to HTML output). On the command line
if you just want to not have input or output prompts just use –no-prompt.
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Execute notebooks from a function

You can now use the executenb function to execute notebooks as though you ran the execute preprocessor on the
notebooks. It returns the standard notebook and resources options.

Remove cells based on regex pattern

This removes cells based on their matching a regex pattern (by default, empty cells). This is the RegexRemovePrepro-
cessor.

Script exporter entrypoints for nonpython scripts

Now there is an entrypoint for having an exporter specific to the type of script that is being exported. While designed
for use with the IRkernel in particular (with a script exporter focused on exporting R scripts) other non-python kernels
that wish to have a language specific exporter can now surface that directly.

15.6.2 Comprehensive notes

• new: configurable ExecutePreprocessor.startup_timeout configurable PR #583

• new: RemoveCell preprocessor based on cell content (defaults to empty cell) PR #575

• new: function for executing notebooks: executenb PR #573

• new: global filtering to remove inputs, outputs, markdown cells (&c.), this works on all templates PR #554

• new: script exporter entrypoint PR #531

• new: configurable anchor link text (previously ¶) HTMLExporter.anchor_link_text PR #522

• new: configurable values for slides exporter PR #542 PR #558

• improved releases (how-to documentation, version-number generation and checking) PR #593

• doc improvements PR #593 PR #580 PR #565 PR #554

• language information from cell magics (for highlighting) is now included in more formats PR #586

• mathjax upgrades and cdn fixes PR #584 PR #567

• better CI PR #571 PR #540

• better traceback behaviour when execution errs PR #521

• deprecated nose test features removed PR #519

• bug fixed: we now respect width and height metadata on jpeg and png mimetype outputs PR #588

• bug fixed: now we respect the resolve_references filter in report.tplx PR #577

• bug fixed: output metadata now is removed by ClearOutputPreprocessor PR #569

• bug fixed: display id respected in execute preproessor PR #563

• bug fixed: dynamic defaults for optional jupyter_client import PR #559

• bug fixed: don’t self-close non-void HTML tags PR #548

• buf fixed: upgrade jupyter_client dependency to 4.2 PR #539

• bug fixed: LaTeX output through md→LaTeX conversion shouldn’t be touched PR #535

• bug fixed: now we escape < inside math formulas when converting to html PR #514
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15.6.3 Credits

This release has been larger than previous releases. In it 33 authors contributed a total of 546 commits.

Many thanks to the following individuals who contributed to this release (in alphabetical order):

• Adam Chainz

• Andreas Mueller

• Bartosz T

• Benjamin Ragan-Kelley

• Carol Willing

• Damián Avila

• Elliot Marsden

• Gao, Xiang

• Jaeho Shin

• Jan Schulz

• Jeremy Kun

• Jessica B. Hamrick

• John B Nelson

• juhasch

• Livia Barazzetti

• M Pacer

• Matej Urbas

• Matthias Bussonnier

• Matthias Geier

• Maximilian Albert

• Michael Scott Cuthbert

• Nicholas Bollweg

• Paul Gowder

• Paulo Villegas

• Peter Parente

• Philipp A

• Scott Sanderson

• Srinivas Reddy Thatiparthy

• Sylvain Corlay

• Thomas Kluyver

• Till Hoffmann

• Xiang Gao

• YuviPanda
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15.7 5.1.1

5.1.1 on GitHub

• fix version numbering because of incomplete previous version number

15.8 5.1

5.1 on GitHub

• improved CSS (specifically tables, in line with notebook) PR #498

• improve in-memory templates handling PR #491

• test improvements PR #516 PR #509 PR #505

• new configuration option: IOPub timeout PR #513

• doc improvements PR #489 PR #500 PR #493 PR #506

• newly customizable: output prompt PR #500

• more python2/3 compatibile unicode handling PR #502

15.9 5.0

5.0 on GitHub

• Use xelatex by default for latex export, improving unicode and font support.

• Use entrypoints internally to access Exporters, allowing for packages to declare custom exporters more easily.

• New ASCIIDoc Exporter.

• New preprocessor for sanitised html output.

• New general convert_pandoc filter to reduce the need to hard-code lists of filters in templates.

• Use pytest, nose dependency to be removed.

• Refactored Exporter code to avoid ambiguity and cyclic dependencies.

• Update to traitlets 4.2 API.

• Fixes for Unicode errors when showing execution errors on Python 2.

• Default math font matches default Palatino body text font.

• General documentation improvements. For example, testing, installation, custom exporters.

• Improved link handling for LaTeX output

• Refactored the automatic id generation.

• New kernel_manager_class configuration option for allowing systems to be set up to resolve kernels in different
ways.

• Kernel errors now will be logged for debugging purposes when executing notebooks.
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15.10 4.3

4.3 on GitHub

• added live widget rendering for html output, nbviewer by extension

15.11 4.2

4.2 on GitHub

• Custom Exporters can be provided by external packages, and registered with nbconvert via setuptools entry-
points.

• allow nbconvert reading from stdin with --stdin option (write into notebook basename)

• Various ANSI-escape fixes and improvements

• Various LaTeX/PDF export fixes

• Various fixes and improvements for executing notebooks with --execute.

15.12 4.1

4.1 on GitHub

• setuptools fixes for entrypoints on Windows

• various fixes for exporters, including slides, latex, and PDF

• fixes for exceptions met during execution

• include markdown outputs in markdown/html exports

15.13 4.0

4.0 on GitHub
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